1
|
Morales SV, Mahmood A, Pollard J, Mayne J, Figeys D, Wiseman PW. The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis. Biophys J 2023; 122:3783-3797. [PMID: 37559362 PMCID: PMC10541495 DOI: 10.1016/j.bpj.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023] Open
Abstract
Membrane cholesterol-rich domains have been shown to be important for regulating a range of membrane protein activities. Low-density lipoprotein receptor (LDLR)-mediated internalization of cholesterol-rich LDL particles is tightly regulated by feedback mechanisms involving intracellular sterol sensors. Since LDLR plays a role in maintaining cellular cholesterol homeostasis, we explore the role that membrane domains may have in regulating LDLR activity. We expressed a fluorescent LDLR-mEGFP construct in HEK293T cells and imaged the unligated receptor or bound to an LDL/DiI fluorescent ligand using total internal reflection fluorescence microscopy. We studied the receptor's spatiotemporal dynamics using fluorescence fluctuation analysis methods. Image cross correlation spectroscopy reveals a lower LDL-to-LDLR binding fraction when membrane cholesterol concentrations are augmented using cholesterol esterase, and a higher binding fraction when the cells are treated with methyl-β-cyclodextrin) to lower membrane cholesterol. This suggests that LDLR's ability to metabolize LDL particles is negatively correlated to membrane cholesterol concentrations. We then tested if a change in activity is accompanied by a change in membrane localization. Image mean-square displacement analysis reveals that unligated LDLR-mEGFP and ligated LDLR-mEGFP/LDL-DiI constructs are transiently confined on the cell membrane, and the size of their confinement domains increases with augmented cholesterol concentrations. Receptor diffusion within the domains and their domain-escape probabilities decrease upon treatment with methyl-β-cyclodextrin, consistent with a change in receptor populations to more confined domains, likely clathrin-coated pits. We propose a feedback model to account for regulation of LDLR within the cell membrane: when membrane cholesterol concentrations are high, LDLR is sequestered in cholesterol-rich domains. These LDLR populations are attenuated in their efficacy to bind and internalize LDL. However, when membrane cholesterol levels drop, LDL has a higher binding affinity to its receptor and the LDLR transits to nascent clathrin-coated domains, where it diffuses at a slower rate while awaiting internalization.
Collapse
Affiliation(s)
- Sebastian V Morales
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Ahmad Mahmood
- Department of Physics, Faculty of Science, McGill University, Montreal, Canada
| | - Jacob Pollard
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada
| | - Janice Mayne
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Paul W Wiseman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Canada; Department of Physics, Faculty of Science, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Abdulova A, Purelku M, Sahin H, Tanrıverdi G. Human ovarian granulosa cells use clathrin-mediated endocytosis for LDL uptake: immunocytochemical and electron microscopic study. Ultrastruct Pathol 2023:1-12. [PMID: 37036899 DOI: 10.1080/01913123.2023.2200532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
The steroidogenic activity of the granulosa cells is important for the reproductive cycle, and lipoproteins are involved in this process. The clathrin-mediated endocytosis pathway for LDL transport is considered to be the main one in eukaryotic cells. However, there are no studies that elucidate LDL internalization in human granulosa cells clarifying whether the clathrin-mediated endocytic pathway is functional in this process. The aim of this study is to investigate the role of clathrin and v-SNARE proteins in the formation of vesicles in human granulosa cells. In this study, the COV434 human granulosa cells were cultured and divided into four groups where in some of the groups Dil-conjugated LDL and Icarugamycin (ICA) a clathrin-mediated endocytosis inhibitor were added. From the collected mediums pregnenolone and progesterone levels were measured using ELISA. Oil red O staining was performed to show the intracellular lipids in the cells. Clathrin-coated vesicles believed to be responsible for carrying LDL, and v-SNARE proteins that direct the vesicles to their target molecules were also labeled and investigated by histological and ultrastructural methods. Our results show that human granulosa cells as well use the LDL cholesterol for steroid biosynthesis and they may prefer the clathrin-mediated endocytotic pathway to internalize it.
Collapse
Affiliation(s)
- Aynur Abdulova
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Merjem Purelku
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Hakan Sahin
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Gamze Tanrıverdi
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| |
Collapse
|
3
|
Samaddar S, Bose D, Loren BP, Skulsky JL, Ilnytska O, Struzik ZJ, Storch J, Thompson DH. Structure-function relationships of cholesterol mobilization from the endo-lysosome compartment of NPC1-deficient human cells by β-CD polyrotaxanes. PLoS One 2022; 17:e0268613. [PMID: 36584173 PMCID: PMC9803220 DOI: 10.1371/journal.pone.0268613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/04/2022] [Indexed: 01/01/2023] Open
Abstract
Niemann-Pick Type C is a rare metabolic disorder characterized by the cellular accumulation of cholesterol within endosomal and lysosomal compartments. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) containing polyrotaxanes represent an attractive approach for treating this disease due to their ability to circulate in the blood stream for longer periods of time as a prodrug form of HP-β-CD. Once inside the cell, the macromolecular structure is thought to break down into the Pluronic precursor and the active cyclodextrin agent that promotes cholesterol mobilization from the aberrant accumulations within NPC-deficient cells. We now report that both cholesterol and decaarginine (R10) endcapped polyrotaxanes are able to remove cholesterol from NPC1 patient fibroblasts. R10 endcapped materials enter these cells and are localized within endosomes after 16 h. The cholesterol mobilization from endo-lysosomal compartments of NPC1 cells by the polyrotaxanes was directly related to their extent of endcapping and their threading efficiency. Incorporation of 4-sulfobutylether-β-cyclodextrin (SBE-β-CD) significantly improved cholesterol mobilization due to the improved solubility of the compounds. Additionally, in our efforts to scale-up the synthesis for preclinical studies, we prepared a library of polyrotaxanes using a solid phase synthesis method. These compounds also led to significant cholesterol mobilization from the cells, however, cytotoxicity studies showed that they were substantially more toxic than those prepared by the solvent-assisted method, thus limiting the therapeutic utility of agents prepared by this expedited method. Our findings demonstrate that complete endcapping of the polyrotaxanes and improved solubility are important design features for delivering high copy numbers of therapeutic β-CD to promote enhanced sterol clearance in human NPC1-deficient cells.
Collapse
Affiliation(s)
- Shayak Samaddar
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Debosreeta Bose
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bradley P. Loren
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph L. Skulsky
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Olga Ilnytska
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Zachary J. Struzik
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (DHT); (JS)
| | - David H. Thompson
- Department of Chemistry and Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (DHT); (JS)
| |
Collapse
|
4
|
Niu J, Wang L, Yuan M, Zhang J, Chen H, Zhang Y. Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
6
|
Petroglou D, Kanellos I, Savopoulos C, Kaiafa G, Chrysochoou A, Skantzis P, Daios S, Hatzitolios AI, Giannoglou G. The LDL-Receptor and its Molecular Properties: From Theory to Novel Biochemical and Pharmacological Approaches in Reducing LDL-cholesterol. Curr Med Chem 2020; 27:317-333. [PMID: 29865996 DOI: 10.2174/0929867325666180604114819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/25/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Low-Density Lipoprotein (LDL) Receptor (LDL-R) is a transmembrane protein playing a crucial role in effective lipid homeostasis. Various therapeutic agents have been used in the management of dyslipidemias, however, the outcome of therapeutic target is debated. OBJECTIVE The aim of this review is to summarize and fully understand the current concept regarding LDL-R and its molecular properties, metabolic pathway, factors affecting LDL-R activity and all available pharmacological interventions. Additionally, non-lipid related properties of LDL-R are also referred. METHODS Literature from the PubMed database was extracted to identify papers between 1984 to 2017 regarding LDL-R and therapeutic agents on dyslipidemia management. RESULTS We analyzed basic data regarding agents associated with LDL-R (Sterol Regulating Element-Binding Proteins - SREBPs, Protein ARH, IDOL, Thyroid Hormones, Haematologic Disorders, Protein convertase subtilisin kexintype 9 - PCSK-9, ApoC-III) as well as non-lipid related properties of LDL-R, while all relevant (common and novel) pharmacological interventions (statins, fibrates, cholesterol absorption inhibitors, bile acid sequestrants and PCSK- 9) are also referred. CONCLUSION LDL-R and its molecular properties are involved in lipid homeostasis, so potentially sets the therapeutic goals in cardiovascular patients, which is usually debated. Further research is needed in order to fully understand its properties, as well as to find the potential pharmacological interventions that could be beneficial in cholesterol homeostasis and various morbidities in order to reach the most appropriate therapeutic goal.
Collapse
Affiliation(s)
- Dimitrios Petroglou
- 1st Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Kanellos
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Savopoulos
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Kaiafa
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Chrysochoou
- 1st Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Skantzis
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Daios
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos I Hatzitolios
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Giannoglou
- 1st Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Meng Y, Liu Y, Fang N, Guo Y. Hepatoprotective effects of Cassia semen ethanol extract on non-alcoholic fatty liver disease in experimental rat. PHARMACEUTICAL BIOLOGY 2019; 57:98-104. [PMID: 30757944 PMCID: PMC6374930 DOI: 10.1080/13880209.2019.1568509] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cassia semen (Cs), a seed of Cassia obtusifolia L. (Leguminosae), is a popular functional beverage. Previous studies reported that Cs displayed antioxidant, antifungal and strong liver protective effects. OBJECTIVE This study evaluates the hepatoprotective effects of Cs on non-alcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS Seventy-two male Wistar rats raised with high-fat diet (HFD) were randomly allotted into model, metformin (0.2 g/kg) and Cs (0.5, 1, and 2 g/kg)-treated groups. Another 12 rats were raised with normal feed as control group; all the rats were orally administrated with drugs and vehicle for 6 weeks. Alanine transferase (ALT), aspartate transaminase (AST), triglycerides (TG), total cholesterol (TC), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8 and low density lipoprotein receptor (LDL-R) mRNA levels were measured at the end of the experiment. RESULTS Twelve weeks of HFD administration significantly increased the levels of AST, ALT, TG, TC, TNF-α, IL-6, IL-8 and MDA, decreased SOD (199.42 vs. 137.70 U/mg protein) and GSH (9.76 vs. 4.55 mg/g protein) contents, compared to control group. Cs administration group significantly decreased the elevated biomarkers with the ED50 = 1.2 g/kg for NAFLD rats. Cs treatment also prevents the decreased expression of LDL-R mRNA, and improved the histopathological changes compared to model group. CONCLUSIONS The hepatoprotective effect of Cs on NAFLD may possibly be due to its antioxidant effect. Cs may become a potent hepatoprotective agent in clinical therapy in the future.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Yong Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Ningning Fang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital of Shandong University, Shandong, Jinan, People's Republic of China
- CONTACT Yongmin Guo Department of Anesthesiology, Qilu Hospital of Shandong University, 107, Wenhua Xi Road, Shandong, Jinan250012, People's Republic of China
| |
Collapse
|
8
|
Differences in the internalization of self-inactivating VSVG-pseudotyped murine leukemia virus-based vectors in human and murine cells. J Virol Methods 2018; 255:14-22. [PMID: 29425681 DOI: 10.1016/j.jviromet.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/18/2022]
Abstract
Self-inactivating VSVG-pseudotyped murine leukemia virus (SIN-VSVG-MLV) has been widely used to generate stable cell lines and produce gene delivery vectors. Despite the broad cellular tropism of the VSVG-pseudotyped MLV, we observed differential viral transduction efficiency depending on the host cell type used. In order to determine the mechanism underlying these differences, we used a GFP-expressing SIN-VSVG-MLV and analyzed the major steps of viral transduction in different cell lines including human epithelial, T-lymphocytes, monocytes and murine fibroblast cells. We observed the better transduction efficiency in HeLa cells, which was 20-fold higher than THP-1 and NIH/3T3 cells. To quantify viral internalization, we determined genomic RNA content by quantifying the early reverse transcription product. Genomic RNA and transduction levels were correlated with HeLa cells showing the higher amount of early RT product followed by tsA201 cells, while NIH/3T3, Jurkat and THP-1 had the lowest amounts. Similar results were observed when the late reverse transcription product was analyzed. Reverse transcription efficiency was 66-85% in HeLa cells and about 30% in tsA201, NIH/3T3, Jurkat and THP-1 cells. Viral integration, determined by Alu-Nested-qPCR, was higher for HeLa and lowerst for Jurkat and THP-1 cells. Interestingly, we observed that viral entry was correlated with the cellular availability of clathrin-mediated endocytosis, which was higher in HeLa and tsA201 cells, potentially explaining the higher rates of SIN-VSVG-MLV transduction and early RT synthesis observed in these cell lines. In conclusion, the SIN-VSVG-MLV vector showed significantly different rates of infectivity depending on the host cell type, possibly due to differential rates of viral internalization.
Collapse
|
9
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
10
|
Ye J, Xia X, Dong W, Hao H, Meng L, Yang Y, Wang R, Lyu Y, Liu Y. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines. Int J Nanomedicine 2016; 11:4125-40. [PMID: 27601899 PMCID: PMC5003597 DOI: 10.2147/ijn.s113638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is no effective clinical therapy for triple-negative breast cancers (TNBCs), which have high low-density lipoprotein (LDL) requirements and express relatively high levels of LDL receptors (LDLRs) on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel-cholesterol complex (PTX-CH Emul) was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231) and non-TNBC (MCF7) cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native LDL. The findings of this paper further confirm the therapeutic potential of PTX-CH Emul in clinical applications involving TNBC therapy.
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Wujun Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Huazhen Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Luhua Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Renyun Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Yuanfeng Lyu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| |
Collapse
|
11
|
Martins IJ. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases. Int J Mol Sci 2015; 16:29554-73. [PMID: 26690419 PMCID: PMC4691133 DOI: 10.3390/ijms161226190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/19/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.
Collapse
Affiliation(s)
- Ian James Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
- McCusker Alzheimer's Research Foundation, Hollywood Medical Centre, 85 Monash Avenue, Suite 22, Nedlands 6009, Australia.
| |
Collapse
|
12
|
Serna M, Wong-Baeza C, Santiago-Hernández JC, Baeza I, Wong C. Hypocholesterolemic and choleretic effects of three dimethoxycinnamic acids in relation to 2,4,5-trimethoxycinnamic acid in rats fed with a high-cholesterol/cholate diet. Pharmacol Rep 2014; 67:553-9. [PMID: 25933969 DOI: 10.1016/j.pharep.2014.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND 2,4,5-Trimethoxycinnamic acid (2,4,5-TMC) is the major and non-toxic metabolite of α-asarone, which retains hypocholesterolemic and choleretic activities. We compared the activities of 2,4,5-TMC with those of 2,4-dimethoxycinnamic acid (2,4-DMC), 3,4-DMC and 3,5-DMC, to understand the role of the methoxyls on carbons 2, 4 and 5 on the pharmacologic properties of these compounds. METHODS The methoxycinnamic acids were administered to high-cholesterol/cholate-fed rats. We measured bile flow, and quantified bile acids, phospholipids and cholesterol in bile, and cholesterol and cholesterol-lipoproteins in serum. The inhibition of HMG-CoA reductase by the methoxycinnamic acids was evaluated in vitro. RESULTS The four methoxycinnamic acids decreased serum cholesterol, without affecting the concentration of HDL-cholesterol. 2,4,5-TMC produced the highest decrease in LDL-cholesterol, 73.5%, which exceeds the range of statins (20-40%), and produced the highest inhibition of the activity of HMG-CoA reductase. 3,4-DMC produced the highest increase in bile flow, bile acids and phospholipids concentrations, and reduction in bile cholesterol, which led to a decrease in the biliary cholesterol saturation index. CONCLUSIONS 2,4,5-TMC (which has three methoxyls) had the highest hypocholesterolemic activity, while 3,4-DMC, which lacks the methoxyl in carbon 2 but conserves the two other methoxyls in an adjacent position, had the highest choleretic activity and a probable cholelitholytic activity. In methoxycinnamic acids with two methoxyls in non-adjacent positions (2,4-DMC and 3,5-DMC), the hypocholesterolemic and choleretic activities were not as evident. 2,4,5-TMC and 3,4-DMC, which did not cause liver damage during the treatment period, should be further explored as a hypocholesterolemic and choleretic compounds in humans.
Collapse
Affiliation(s)
- Manuel Serna
- Biochemistry Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico.
| | - Carlos Wong-Baeza
- Biochemistry Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico.
| | | | - Isabel Baeza
- Biochemistry Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico.
| | - Carlos Wong
- Biochemistry Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|