1
|
Leng X, Liu M, Tao D, Yang B, Zhang Y, He T, Xie S, Wang Z, Liu Y, Yang Y. Epigenetic modification-dependent androgen receptor occupancy facilitates the ectopic TSPY1 expression in prostate cancer cells. Cancer Sci 2020; 112:691-702. [PMID: 33185915 PMCID: PMC7894013 DOI: 10.1111/cas.14731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Testis‐specific protein Y‐encoded 1 (TSPY1), a Y chromosome‐linked oncogene, is frequently activated in prostate cancers (PCa) and its expression is correlated with the poor prognosis of PCa. However, the cause of the ectopic transcription of TSPY1 in PCa remains unclear. Here, we observed that the methylation status in the CpG islands (CGI) of the TSPY1 promoter was negatively correlated with its expression level in different human samples. The acetyl‐histone H4 and trimethylated histone H3‐lysine 4, two post–translational modifications of histones occupying the TSPY1 promoter, facilitated the TSPY1 expression in PCa cells. In addition, we found that androgen accelerated the TSPY1 transcription on the condition of hypomethylated of TSPY1‐CGI and promoted PCa cell proliferation. Moreover, the binding of androgen receptor (AR) to the TSPY1 promoter, enhancing TSPY1 transcription, was detected in PCa cells. Taken together, our findings identified the regulation of DNA methylation, acting as a primary mechanism, on TSPY1 expression in PCa, and revealed that TSPY1 is an androgen‐AR axis‐regulated oncogene, suggesting a novel and potential target for PCa therapy.
Collapse
Affiliation(s)
- Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tianrong He
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kido T, Tabatabai ZL, Chen X, Lau YFC. Potential dual functional roles of the Y-linked RBMY in hepatocarcinogenesis. Cancer Sci 2020; 111:2987-2999. [PMID: 32473614 PMCID: PMC7419034 DOI: 10.1111/cas.14506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous liver cancer with significant male biases in incidence, disease progression, and outcomes. Previous studies have suggested that genes on the Y chromosome could be expressed and exert various male‐specific functions in the oncogenic processes. In particular, the RNA‐binding motif on the Y chromosome (RBMY) gene is frequently activated in HCC and postulated to promote hepatic oncogenesis in patients and animal models. In the present study, immunohistochemical analyses of HCC specimens and data mining of The Cancer Genome Atlas (TCGA) database revealed that high‐level RBMY expression is associated with poor prognosis and survival of the patients, suggesting that RBMY could possess oncogenic properties in HCC. To examine the immediate effect(s) of the RBMY overexpression in liver cancer cells, cell proliferation was analyzed on HuH‐7 and HepG2 cells. The results unexpectedly showed that RBMY overexpression inhibited cell proliferation in both cell lines as its immediate effect, which led to vast cell death in HuH‐7 cells. Transcriptome analysis showed that genes involved in various cell proliferative pathways, such as the RAS/RAF/MAP and PIP3/AKT signaling pathways, were downregulated by RBMY overexpression in HuH‐7 cells. Furthermore, in vivo analyses in a mouse liver cancer model using hydrodynamic tail vein injection of constitutively active AKT and RAS oncogenes showed that RBMY abolished HCC development. These findings support the notion that Y‐linked RBMY could serve dual tumor‐suppressing and tumor‐promoting functions, depending on the spatiotemporal and magnitude of its expression during oncogenic processes, thereby contributing to sexual dimorphisms in liver cancer.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Department of Pathology, San Francisco VA Health Care System, San Francisco, CA, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.,Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, USA.,Institute for Human Genetics, University of California, San Francisco, CA, USA.,Liver Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Vegesna R, Tomaszkiewicz M, Medvedev P, Makova KD. Dosage regulation, and variation in gene expression and copy number of human Y chromosome ampliconic genes. PLoS Genet 2019; 15:e1008369. [PMID: 31525193 PMCID: PMC6772104 DOI: 10.1371/journal.pgen.1008369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/01/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
The Y chromosome harbors nine multi-copy ampliconic gene families expressed exclusively in testis. The gene copies within each family are >99% identical to each other, which poses a major challenge in evaluating their copy number. Recent studies demonstrated high variation in Y ampliconic gene copy number among humans. However, how this variation affects expression levels in human testis remains understudied. Here we developed a novel computational tool Ampliconic Copy Number Estimator (AmpliCoNE) that utilizes read sequencing depth information to estimate Y ampliconic gene copy number per family. We applied this tool to whole-genome sequencing data of 149 men with matched testis expression data whose samples are part of the Genotype-Tissue Expression (GTEx) project. We found that the Y ampliconic gene families with low copy number in humans were deleted or pseudogenized in non-human great apes, suggesting relaxation of functional constraints. Among the Y ampliconic gene families, higher copy number leads to higher expression. Within the Y ampliconic gene families, copy number does not influence gene expression, rather a high tolerance for variation in gene expression was observed in testis of presumably healthy men. No differences in gene expression levels were found among major Y haplogroups. Age positively correlated with expression levels of the HSFY and PRY gene families in the African subhaplogroup E1b, but not in the European subhaplogroups R1b and I1. We also found that expression of five Y ampliconic gene families is coordinated with that of their non-Y (i.e. X or autosomal) homologs. Indeed, five ampliconic gene families had consistently lower expression levels when compared to their non-Y homologs suggesting dosage regulation, while the HSFY family had higher expression levels than its X homolog and thus lacked dosage regulation.
Collapse
MESH Headings
- Animals
- Chromosomes, Human, Y/genetics
- Chromosomes, Human, Y/physiology
- DNA Copy Number Variations/genetics
- Databases, Genetic
- Dosage Compensation, Genetic/genetics
- Dosage Compensation, Genetic/physiology
- Epigenesis, Genetic/genetics
- Gene Dosage/genetics
- Gene Expression/genetics
- Gene Expression Regulation/genetics
- Genes, Y-Linked/genetics
- Genes, Y-Linked/physiology
- Heat Shock Transcription Factors/genetics
- Heat Shock Transcription Factors/metabolism
- Humans
- Male
- Multigene Family/genetics
- Sequence Analysis, DNA/methods
- Testis/metabolism
Collapse
Affiliation(s)
- Rahulsimham Vegesna
- Bioinformatics and Genomics Graduate Program, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Marta Tomaszkiewicz
- Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Paul Medvedev
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, United States of America
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, United States of America
- Center for Medical Genomics, Pennsylvania State University, University Park, PA, United States of America
| | - Kateryna D. Makova
- Bioinformatics and Genomics Graduate Program, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, United States of America
- Department of Biology, Pennsylvania State University, University Park, PA, United States of America
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, United States of America
- Center for Medical Genomics, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
4
|
Lau YFC, Li Y, Kido T. Battle of the sexes: contrasting roles of testis-specific protein Y-encoded (TSPY) and TSPX in human oncogenesis. Asian J Androl 2019; 21:260-269. [PMID: 29974883 PMCID: PMC6498724 DOI: 10.4103/aja.aja_43_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
The Y-located testis-specific protein Y-encoded (TSPY) and its X-homologue TSPX originated from the same ancestral gene, but act as a proto-oncogene and a tumor suppressor gene, respectively. TSPY has specialized in male-specific functions, while TSPX has assumed the functions of the ancestral gene. Both TSPY and TSPX harbor a conserved SET/NAP domain, but are divergent at flanking structures. Specifically, TSPX contains a C-terminal acidic domain, absent in TSPY. They possess contrasting properties, in which TSPY and TSPX, respectively, accelerate and arrest cell proliferation, stimulate and inhibit cyclin B-CDK1 phosphorylation activities, have no effect and promote proteosomal degradation of the viral HBx oncoprotein, and exacerbate and repress androgen receptor (AR) and constitutively active AR variant, such as AR-V7, gene transactivation. The inhibitory domain has been mapped to the carboxyl acidic domain in TSPX, truncation of which results in an abbreviated TSPX exerting positive actions as TSPY. Transposition of the acidic domain to the C-terminus of TSPY results in an inhibitory protein as intact TSPX. Hence, genomic mutations/aberrant splicing events could generate TSPX proteins with truncated acidic domain and oncogenic properties as those for TSPY. Further, TSPY is upregulated by AR and AR-V7 in ligand-dependent and ligand-independent manners, respectively, suggesting the existence of a positive feedback loop between a Y-located proto-oncogene and male sex hormone/receptors, thereby amplifying the respective male oncogenic actions in human cancers and diseases. TSPX counteracts such positive feedback loop. Hence, TSPY and TSPX are homologues on the sex chromosomes that function at the two extremes of the human oncogenic spectrum.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
5
|
Tu W, Yang B, Leng X, Pei X, Xu J, Liu M, Dong Q, Tao D, Lu Y, Liu Y, Yang Y. Testis-specific protein, Y-linked 1 activates PI3K/AKT and RAS signaling pathways through suppressing IGFBP3 expression during tumor progression. Cancer Sci 2019; 110:1573-1586. [PMID: 30815935 PMCID: PMC6501036 DOI: 10.1111/cas.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 02/05/2023] Open
Abstract
The testis‐specific protein, Y‐linked 1 (TSPY1), a newly recognized cancer/testis antigen, has been suggested to accelerate tumor progression. However, the mechanisms underlying TSPY1 cancer‐related function remain limited. By mining the RNA sequencing data of lung and liver tumors from The Cancer Genome Atlas, we found frequent ectopic expression of TSPY1 in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC), and the male‐specific protein was associated with higher mortality rate and worse overall survival in patients with LUAD and LIHC. Overexpression of TSPY1 promotes cell proliferation, invasiveness, and cycle transition and inhibits apoptosis, whereas TSPY1 knockdown has the opposite effects on these cancer cell phenotypes. Transcriptomic analysis revealed the involvement of TSPY1 in PI3K/AKT and RAS signaling pathways in both LUAD and LIHC cells, which was further confirmed by the increase in the levels of phosphorylated proteins in the PI3K‐AKT and RAS signaling pathways in TSPY1‐overexpressing cancer cells, and by the suppression on the activity of these two pathways in TSPY1‐knockdown cells. Further investigation identified that TSPY1 could directly bind to the promoter of insulin growth factor binding protein 3 (IGFBP3) to inhibit IGFBP3 expression and that downregulation of IGFBP3 increased the activity of PI3K/AKT/mTOR/BCL2 and RAS/RAF/MEK/ERK/JUN signaling in LUAD and LIHC cells. Taken together, the observations reveal a novel mechanism by which TSPY1 could contribute to the progression of LUAD and LIHC. Our finding is of importance for evaluating the potential of TSPY1 in immunotherapy of male tumor patients with TSPY1 expression.
Collapse
Affiliation(s)
- Wenling Tu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xue Pei
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jinyan Xu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yongjie Lu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Kido T, Lau YFC. The Y-linked proto-oncogene TSPY contributes to poor prognosis of the male hepatocellular carcinoma patients by promoting the pro-oncogenic and suppressing the anti-oncogenic gene expression. Cell Biosci 2019; 9:22. [PMID: 30867900 PMCID: PMC6399826 DOI: 10.1186/s13578-019-0287-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Liver cancer is one of the major causes of cancer death worldwide, with significantly higher incidence and mortality among the male patients. Although sex hormones and their receptors could contribute to such sex differences, the story is incomplete. Genes on the male-specific region of the Y chromosome could play a role(s) in this cancer. TSPY is the putative gene for the gonadoblastoma locus on the Y chromosome (GBY) that is ectopically expressed in a subset of male hepatocellular carcinomas (HCCs). Although various studies showed that TSPY expression is associated with poor prognosis in the patients and its overexpression promotes cell proliferation of various cancer cell lines, it remains unclear how TSPY contributes to the clinical outcomes of the HCC patients. Identifying the downstream genes and pathways of TSPY actions would provide novel insights on its contribution(s) to male predominance in this deadly cancer. Results To determine the effects of TSPY on HCC, a TSPY transgene was introduced to the HCC cell line, HuH-7, and studied with RNA-Seq transcriptome analysis. The results showed that TSPY upregulates various genes associated with cell-cycle and cell-viability, and suppresses cell-death related genes. To correlate the experimental observations with those of clinical specimens, transcriptomes of male HCCs with high TSPY expression were analyzed with reference to those with silent TSPY expression from the Cancer Genome Atlas (TCGA). The comparative analysis identified 49 genes, which showed parallel expression patterns between HuH-7 cells overexpressing TSPY and clinical specimens with high TSPY expression. Among these 49 genes, 16 likely downstream genes could be associated with survival rates in HCC patients. The major upregulated targets were cell-cycle related genes and growth factor receptor genes, including CDC25B and HMMR, whose expression levels are negatively correlated with the patient survival rates. In contrast, PPARGC1A, SLC25A25 and SOCS2 were downregulated with TSPY expression, and possess favorable prognoses for HCC patients. Conclusion We demonstrate that TSPY could exacerbate the oncogenesis of HCC by differentially upregulate the expression of pro-oncogenic genes and downregulate those of anti-oncogenic genes in male HCC patients, thereby contributing to the male predominance in this deadly cancer. Electronic supplementary material The online version of this article (10.1186/s13578-019-0287-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatsuo Kido
- 1Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA.,2Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| | - Yun-Fai Chris Lau
- 1Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA.,2Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143 USA
| |
Collapse
|
7
|
Shen Y, Tu W, Liu Y, Yang X, Dong Q, Yang B, Xu J, Yan Y, Pei X, Liu M, Xu W, Yang Y. TSPY1 suppresses USP7-mediated p53 function and promotes spermatogonial proliferation. Cell Death Dis 2018; 9:542. [PMID: 29748603 PMCID: PMC5945610 DOI: 10.1038/s41419-018-0589-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 02/05/2023]
Abstract
Testis-specific protein Y-linked 1 (TSPY1) is expressed predominantly in adult human spermatogonia and functions in the process of spermatogenesis; however, our understanding of the underlying mechanism is limited. Here we observed that TSPY1, as an interacting partner of TSPY-like 5 (TSPYL5), enhanced the competitive binding of TSPYL5 to ubiquitin-specific peptidase 7 (USP7) in conjunction with p53. This activity, together with its promotion of TSPYL5 expression by acting as a transcription factor, resulted in increased p53 ubiquitylation. Moreover, TSPY1 could decrease the p53 level by inducing the degradation of ubiquitinated USP7. We demonstrated that the promotion of p53 degradation by TSPY1 influenced the activity of p53 target molecules (CDK1, p21, and BAX) to expedite the G2/M phase transition and decrease cell apoptosis, accelerating cell proliferation. Taken together, the observations reveal the significance of TSPY1 as a suppressor of USP7-mediated p53 function in inhibiting p53-dependent cell proliferation arrest. By simulating TSPY1 function in Tspy1-deficient spermatogonia derived from mouse testes, we found that TSPY1 could promote spermatogonial proliferation by decreasing the Usp7-modulated p53 level. The findings suggest an additional mechanism underlying the regulation of spermatogonial p53 function, indicating the significance of TSPY1 in germline homeostasis maintenance and the potential of TSPY1 in regulating human spermatogonial proliferation via the USP7-mediated p53 signaling pathway.
Collapse
Affiliation(s)
- Ying Shen
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.,Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenling Tu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Xiling Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyan Xu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yuanlong Yan
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Xue Pei
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
8
|
Kido T, Sun Z, Lau YFC. Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Sci Rep 2017; 7:4113. [PMID: 28646221 PMCID: PMC5482865 DOI: 10.1038/s41598-017-04117-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/09/2017] [Indexed: 02/08/2023] Open
Abstract
Sexual dimorphisms are prevalent in development, physiology and diseases in humans. Currently, the contributions of the genes on the male-specific region of the Y chromosome (MSY) in these processes are uncertain. Using a transgene activation system, the human sex-determining gene hSRY is activated in the single-cell embryos of the mouse. Pups with hSRY activated (hSRYON) are born of similar sizes as those of non-activated controls. However, they retard significantly in postnatal growth and development and all die of multi-organ failure before two weeks of age. Pathological and molecular analyses indicate that hSRYON pups lack innate suckling activities, and develop fatty liver disease, arrested alveologenesis in the lung, impaired neurogenesis in the brain and occasional myocardial fibrosis and minimized thymus development. Transcriptome analysis shows that, in addition to those unique to the respective organs, various cell growth and survival pathways and functions are differentially affected in the transgenic mice. These observations suggest that ectopic activation of a Y-located SRY gene could exert male-specific effects in development and physiology of multiple organs, thereby contributing to sexual dimorphisms in normal biological functions and disease processes in affected individuals.
Collapse
Affiliation(s)
- Tatsuo Kido
- Department of Medicine, VA Medical Center, and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Zhaoyu Sun
- Department of Medicine, VA Medical Center, and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Yun-Fai Chris Lau
- Department of Medicine, VA Medical Center, and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Abstract
Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition) with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT), such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.
Collapse
Affiliation(s)
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, Institute for Human Genetics, University of California, San Francisco, California 94121, USA
| |
Collapse
|