2
|
Ye Y, Tang WK, Zhang T, Xia D. A Mighty "Protein Extractor" of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci 2017; 4:39. [PMID: 28660197 PMCID: PMC5468458 DOI: 10.3389/fmolb.2017.00039] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to segregation of polypeptides from immobile cellular structures such as protein assemblies, membranes, ribosome, and chromatin. This often results in proteasomal degradation of extracted polypeptides. Given the diversity of p97 substrates, this "segregase" activity has profound influence on cellular physiology ranging from protein homeostasis to DNA lesion sensing, and mutations in p97 have been linked to several human diseases. Here we summarize our current understanding of the structure and function of this important cellular machinery and discuss the relevant clinical implications.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| | - Ting Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, United States
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
3
|
Hall EA, Nahorski MS, Murray LM, Shaheen R, Perkins E, Dissanayake KN, Kristaryanto Y, Jones RA, Vogt J, Rivagorda M, Handley MT, Mali GR, Quidwai T, Soares DC, Keighren MA, McKie L, Mort RL, Gammoh N, Garcia-Munoz A, Davey T, Vermeren M, Walsh D, Budd P, Aligianis IA, Faqeih E, Quigley AJ, Jackson IJ, Kulathu Y, Jackson M, Ribchester RR, von Kriegsheim A, Alkuraya FS, Woods CG, Maher ER, Mill P. PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet 2017; 100:706-724. [PMID: 28413018 PMCID: PMC5420347 DOI: 10.1016/j.ajhg.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.
Collapse
Affiliation(s)
- Emma A Hall
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Michael S Nahorski
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK; Department of Medical Genetics, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 OXY, UK
| | - Lyndsay M Murray
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Emma Perkins
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Kosala N Dissanayake
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Yosua Kristaryanto
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Ross A Jones
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Julie Vogt
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Manon Rivagorda
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark T Handley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Girish R Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tooba Quidwai
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaret A Keighren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lisa McKie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Richard L Mort
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Noor Gammoh
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle NE2 4HH, UK
| | - Matthieu Vermeren
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Diana Walsh
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Peter Budd
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Irene A Aligianis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh 11211, Saudi Arabia
| | - Alan J Quigley
- NHS Lothian, Department of Paediatric Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, UK
| | - Mandy Jackson
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Richard R Ribchester
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK; Department of Medical Genetics, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 OXY, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 OXY, UK.
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|