1
|
Choi Y, Jakob R, Ehret AE, von Bohemer L, Cesarovic N, Falk V, Emmert MY, Mazza E, Giampietro C. Stretch-induced damage in endothelial monolayers. BIOMATERIALS ADVANCES 2024; 163:213938. [PMID: 38959650 DOI: 10.1016/j.bioadv.2024.213938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Endothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations. The aged and senescent phenotypes were more fragile to stretch-induced damage. Prominent damage was detected by immunofluorescence and scanning electron microscopy as intercellular and intracellular void formation. Damage increased proportionally to the applied level of deformation and, for the aged and senescent phenotype, induced significant detachment of cells at lower levels of stretch compared to the young counterpart. Based on the phenotypic difference in cell-substrate adhesion of senescent cells indicating more mature focal adhesions, a discrete network model of endothelial cells being stretched was developed. The model showed that the more affine deformation of senescent cells increased their intracellular energy, thus enhancing the tendency for cellular damage and impending detachment. Next to quantifying for the first-time critical levels of endothelial stretch, the present results indicate that young cells are more resilient to deformation and that the fragility of senescent cells may be associated with their stronger adhesion to the substrate.
Collapse
Affiliation(s)
- Young Choi
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland
| | - Raphael Jakob
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland
| | - Alexander E Ehret
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Lisa von Bohemer
- University of Zurich, Institute of Regenerative Medicine, Schlieren, Switzerland
| | - Nikola Cesarovic
- ETH Zürich, Dep. of Health Sciences and Technology, Zürich, Switzerland; Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Volkmar Falk
- ETH Zürich, Dep. of Health Sciences and Technology, Zürich, Switzerland; Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Y Emmert
- University of Zurich, Institute of Regenerative Medicine, Schlieren, Switzerland; Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edoardo Mazza
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
2
|
Abbasi M, Zarei-Hanzaki A, Baghaei K, Abedi HR, Haghighipour N. Compression-induced apoptosis of fibroblasts and myofibroblasts in an in vitro model of pulmonary fibrosis by alginate/gelatin scaffold. Int J Biol Macromol 2024; 280:135875. [PMID: 39307498 DOI: 10.1016/j.ijbiomac.2024.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Pulmonary fibrosis leads to increased mortality but is poorly understood. Fibrotic progression is associated with abnormal wound repair and an increase in myofibroblast cell populations. Here we investigate how the myofibroblast population is impacted by unique compression-induced apoptosis derived from mechanical strain characteristic of asthma. Using a mechanical device, both static and dynamic mechanical strains were applied to alginate/gelatin/CaCl2 scaffolds containing fibroblasts and myofibroblasts. As cell groups were stimulated with 30 % static strain for 12 h, fibroblast and myofibroblast cell groups showed increased cell apoptosis by 5.55 % and 19.56 %, respectively, compared to control groups. Additionally, myofibroblasts exhibited higher susceptibility to apoptosis induction than did fibroblasts. Comparing dynamic and static loading modes, dynamic loading resulted in a higher apoptosis rate of fibroblast and myofibroblast cells, indicating its potential to induce apoptosis effectively. These findings suggest that mechanical stimulation can be considered a promising approach to induce apoptosis in myofibroblasts, thus offering the potential for future approaches to treating pulmonary fibrosis. Moreover, mechanical loads can be designed for other diseases, selectively reducing or increasing apoptosis in either hard or soft cell groups, based on specific application needs.
Collapse
Affiliation(s)
- Mahla Abbasi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Abbas Zarei-Hanzaki
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Kaveh Baghaei
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Abedi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | | |
Collapse
|
3
|
Li Y, Wu J, He C, He H, Xie M, Yao K, He J, Duan Y, Zhaung L, Wang P, He Y. 3D Prestress Bioprinting of Directed Tissues. Adv Healthc Mater 2023; 12:e2301487. [PMID: 37249520 DOI: 10.1002/adhm.202301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Many mammalian tissues adopt a specific cellular arrangement under stress stimulus that enables their unique function. However, conventional 3D encapsulation often fails to recapitulate the complexities of these arrangements, thus motivating the need for advanced cellular arrangement approaches. Here, an original 3D prestress bioprinting approach of directed tissues under the synergistic effect of static sustained tensile stress and molecular chain orientation, with an aid of slow crosslinking in bioink, is developed. The semi-crosslinking state of the designed bioink exhibits excellent elasticity for applying stress on the cells during the sewing-like process. After bioprinting, the bioink gradually forms complete crosslinking and keeps the applied stress force to induce cell-orientated growth. More importantly, multiple cell types can be arranged directionally by this approach, while the internal stress of the hydrogel filament is also adjustable. In addition, compared with conventional bioprinted skin, the 3D prestress bioprinted skin results in a better wound healing effect due to promoting the angiogenesis of granulation tissue. This study provides a prospective strategy to engineer skeletal muscles, as well as tendons, ligaments, vascular networks, or combinations thereof in the future.
Collapse
Affiliation(s)
- Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chuanjiang He
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honghui He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhaung
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Lin LQ, Zeng HK, Luo YL, Chen DF, Ma XQ, Chen HJ, Song XY, Wu HK, Li SY. Mechanical stretch promotes apoptosis and impedes ciliogenesis of primary human airway basal stem cells. Respir Res 2023; 24:237. [PMID: 37773064 PMCID: PMC10540374 DOI: 10.1186/s12931-023-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Airway basal stem cells (ABSCs) have self-renewal and differentiation abilities. Although an abnormal mechanical environment related to chronic airway disease (CAD) can cause ABSC dysfunction, it remains unclear how mechanical stretch regulates the behavior and structure of ABSCs. Here, we explored the effect of mechanical stretch on primary human ABSCs. METHODS Primary human ABSCs were isolated from healthy volunteers. A Flexcell FX-5000 Tension system was used to mimic the pathological airway mechanical stretch conditions of patients with CAD. ABSCs were stretched for 12, 24, or 48 h with 20% elongation. We first performed bulk RNA sequencing to identify the most predominantly changed genes and pathways. Next, apoptosis of stretched ABSCs was detected with Annexin V-FITC/PI staining and a caspase 3 activity assay. Proliferation of stretched ABSCs was assessed by measuring MKI67 mRNA expression and cell cycle dynamics. Immunofluorescence and hematoxylin-eosin staining were used to demonstrate the differentiation state of ABSCs at the air-liquid interface. RESULTS Compared with unstretched control cells, apoptosis and caspase 3 activation of ABSCs stretched for 48 h were significantly increased (p < 0.0001; p < 0.0001, respectively), and MKI67 mRNA levels were decreased (p < 0.0001). In addition, a significant increase in the G0/G1 population (20.2%, p < 0.001) and a significant decrease in S-phase cells (21.1%, p < 0.0001) were observed. The ratio of Krt5+ ABSCs was significantly higher (32.38% vs. 48.71%, p = 0.0037) following stretching, while the ratio of Ac-tub+ cells was significantly lower (37.64% vs. 21.29%, p < 0.001). Moreover, compared with the control, the expression of NKX2-1 was upregulated significantly after stretching (14.06% vs. 39.51%, p < 0.0001). RNA sequencing showed 285 differentially expressed genes, among which 140 were upregulated and 145 were downregulated, revealing that DDIAS, BIRC5, TGFBI, and NKX2-1 may be involved in the function of primary human ABSCs during mechanical stretch. There was no apparent difference between stretching ABSCs for 24 and 48 h compared with the control. CONCLUSIONS Pathological stretching induces apoptosis of ABSCs, inhibits their proliferation, and disrupts cilia cell differentiation. These features may be related to abnormal regeneration and repair observed after airway epithelium injury in patients with CAD.
Collapse
Affiliation(s)
- Li-Qin Lin
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Hai-Kang Zeng
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Yu-Long Luo
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, Guangdong, China
- Key Laboratory of Biological Targeting Diagnosis, Guangzhou, 510799, Guangdong, China
- Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou, 510799, Guangdong, China
- Innovation Centre for Advanced Interdisciplinary Medicine, Guangzhou, 510799, Guangdong, China
| | - Di-Fei Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Xiao-Qian Ma
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Huan-Jie Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Xin-Yu Song
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Hong-Kai Wu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China
| | - Shi-Yue Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, Guangdong, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, Guangdong, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 511495, Guangdong, China.
| |
Collapse
|
5
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Cheng J, Zou Q, Xue Y, Sun C, Zhang D. Mechanical stretch promotes antioxidant responses and cardiomyogenic differentiation in P19 cells. J Tissue Eng Regen Med 2021; 15:453-462. [PMID: 33743188 DOI: 10.1002/term.3184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 11/07/2022]
Abstract
Accumulating evidence has suggested that mechanical stimuli play a crucial role in regulating the lineage-specific differentiation of stem cells through fine-tuning redox balance. We aimed to investigate the effects of cyclic tensile strain (CTS) on the expression of antioxidant enzymes and cardiac-specific genes in P19 cells, a widely characterized tool for cardiac differentiation research. A stretching device was applied to generate different magnitude and duration of cyclic strains on P19 cells. The messenger RNA and protein levels of targeted genes were determined by real-time polymerase chain reaction and Western blot assays, respectively. Proper magnitude and duration of cognitive stimulation therapy (CST) stimulation substantially enhanced the expression of both antioxidant enzymes and cardiac-specific genes in P19 cells. Sirtuin 1 (SIRT1) played an essential role in the CTS-induced cardiomyogenic differentiation of P19, as evidenced by changes in the expression of antioxidant enzymes and cardiac-specific genes. Mechanical loading promoted the cardiomyogenic differentiation of P19 cells. SIRT1 was involved in CST-mediated P19 differentiation, implying that SIRT1 might serve as an important target for developing methods to promote cardiomyogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qing Zou
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yugang Xue
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Chuang Sun
- Department of Cardiology, Xi'An International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Levin RA, Carnegie MH, Celermajer DS. Pulse Pressure: An Emerging Therapeutic Target for Dementia. Front Neurosci 2020; 14:669. [PMID: 32670015 PMCID: PMC7327093 DOI: 10.3389/fnins.2020.00669] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Elevated pulse pressure can cause blood-brain barrier dysfunction and subsequent adverse neurological changes that may drive or contribute to the development of dementia with age. In short, elevated pulse pressure dysregulates cerebral endothelial cells and increases cellular production of oxidative and inflammatory molecules. The resulting cerebral microvascular damage, along with excessive pulsatile mechanical force, can induce breakdown of the blood-brain barrier, which in turn triggers brain cell impairment and death. We speculate that elevated pulse pressure may also reduce the efficacy of other therapeutic strategies for dementia. For instance, BACE1 inhibitors and anti-amyloid-β biologics reduce amyloid-β deposits in the brain that are thought to be a cause of Alzheimer’s disease, the most prevalent form of dementia. However, upregulation of oxidative and inflammatory molecules and increased amyloid-β secretion by cerebral endothelial cells exposed to elevated pulse pressure may hinder cognitive improvements with these drugs. Additionally, stem or progenitor cell therapy has the potential to repair blood-brain barrier damage, but chronic oxidative and inflammatory stress due to elevated pulse pressure can inhibit stem and progenitor cell regeneration. Finally, we discuss current efforts to repurpose blood pressure medications to prevent or treat dementia. We propose that new drugs or devices should be developed to safely reduce elevated pulse pressure specifically to the brain. Such novel technologies may alleviate an entire downstream pathway of cellular dysfunction, oxidation, inflammation, and amyloidogenesis, thereby preventing pulse-pressure-induced cognitive decline. Furthermore, these technologies may also enhance efficacy of other dementia therapeutics when used in combination.
Collapse
Affiliation(s)
- Rachel A Levin
- The Brain Protection Company, Sydney, NSW, Australia.,M.H. Carnegie & Co., Sydney, NSW, Australia
| | - Mark H Carnegie
- The Brain Protection Company, Sydney, NSW, Australia.,M.H. Carnegie & Co., Sydney, NSW, Australia
| | - David S Celermajer
- The Brain Protection Company, Sydney, NSW, Australia.,The Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
8
|
Takao S, Taya M, Chiew C. Mechanical stress-induced cell death in breast cancer cells. Biol Open 2019; 8:bio043133. [PMID: 31362953 PMCID: PMC6737978 DOI: 10.1242/bio.043133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Providing an external mechanical stress to cancer cells seems to be an effective approach to treat cancer locally. Numbers of reports on cancer cell death subjected to mechanical stress loading are increasing, but they are more focused on apoptosis. Inducing necrosis is also important in attracting more immune cells to the cancer site via the release of danger-associated molecular patterns from cancer cells. Here we applied dynamic compression to breast cancer cells with a low frequency (0.1-30 Hz) and for a short duration (30-300 s) and they resulted in a mixed mode of apoptosis and necrosis dominant with necrotic cell death, which we call mechanical stress-induced cell death (MSICD). The necrotic cell damage of mechanically treated breast cancer cells increased in a force-dependent and time-dependent manner while a trend of frequency-independent MSICD was observed.
Collapse
Affiliation(s)
- Satomi Takao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Minoru Taya
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Cerwyn Chiew
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Chen X, Yan J, He F, Zhong D, Yang H, Pei M, Luo ZP. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic Biol Med 2018; 126:187-201. [PMID: 30096433 PMCID: PMC6165675 DOI: 10.1016/j.freeradbiomed.2018.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising cell sources for regenerative medicine. Growing evidence has indicated that mechanical stimuli are crucial for their lineage-specific differentiation. However, the effect of mechanical loading on redox balance and the intracellular antioxidant system in MSCs was unknown. In this study, human bone marrow-derived MSCs (BM-MSCs) were subjected to cyclic stretch at the magnitude of 2.5%, 5%, and 10%. Cell proliferation, intracellular reactive oxygen species (ROS), expression of antioxidant enzymes, and osteogenic differentiation were evaluated. RNA was extracted and subjected to DNA microarray analysis. Sirtinol and compound C were used to investigate the underlying mechanisms involved silent information regulator type 1 (SIRT1) and AMP-activated protein kinase (AMPK). Our results showed that mechanical stretch at appropriate magnitudes increased cell proliferation, up-regulated extracellular matrix organization, and down-regulated matrix disassembly. After 3 days of stretch, intracellular ROS in BM-MSCs were decreased but the levels of antioxidant enzymes, especially superoxide dismutase 1 (SOD1), were up-regulated. Osteogenesis was improved by 5% stretch rather than 10% stretch, as evidenced by increased matrix mineralization and osteogenic marker gene expression. The expression of SIRT1 and phosphorylation of AMPK were enhanced by mechanical stretch; however, inhibition of SIRT1 or AMPK abrogated the stretch-induced antioxidant effect on BM-MSCs and inhibited the stretch-mediated osteogenic differentiation. Our findings reveal that mechanical stretch induced antioxidant responses, attenuated intracellular ROS, and improved osteogenesis of BM-MSCs. The stretch-induced antioxidant effect was through activation of the AMPK-SIRT1 signaling pathway. Our findings demonstrated that appropriate mechanical stimulation can improve MSC antioxidant functions and benefit bone regeneration.
Collapse
Affiliation(s)
- Xi Chen
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Jinku Yan
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Fan He
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Dongyan Zhong
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Zong-Ping Luo
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
10
|
Xu B, Wang Y, Li X, Mao Y, Deng X. RNA‑sequencing analysis of aberrantly expressed long non‑coding RNAs and mRNAs in a mouse model of ventilator‑induced lung injury. Mol Med Rep 2018; 18:882-892. [PMID: 29845294 PMCID: PMC6059720 DOI: 10.3892/mmr.2018.9034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are closely associated with the regulation of various biological processes and are involved in the pathogenesis of numerous diseases. However, to the best of our knowledge, the role of lncRNAs in ventilator‑induced lung injury (VILI) has yet to be evaluated. In the present study, high‑throughput sequencing was applied to investigate differentially expressed lncRNAs and mRNAs (fold change >2; false discovery rate <0.05). Bioinformatics analysis was employed to predict the functions of differentially expressed lncRNAs. A total of 104 lncRNAs (74 upregulated and 30 downregulated) and 809 mRNAs (521 upregulated and 288 downregulated) were differentially expressed in lung tissues from the VILI group. Gene ontology analysis demonstrated that the differentially expressed lncRNAs and mRNAs were mainly associated with biological functions, including apoptosis, angiogenesis, neutrophil chemotaxis and skeletal muscle cell differentiation. The top four enriched pathways were the tumor necrosis factor (TNF) signaling pathway, P53 signaling pathway, neuroactive ligand‑receptor interaction and the forkhead box O signaling pathway. Several lncRNAs were predicted to serve a vital role in VILI. Subsequently, three lncRNAs [mitogen‑activated protein kinase kinase 3, opposite strand (Map2k3os), dynamin 3, opposite strand and abhydrolase domain containing 11, opposite strand] and three mRNAs (growth arrest and DNA damage‑inducible α, claudin 4 and thromboxane A2 receptor) were measured by reverse transcription‑quantitative polymerase chain reaction, in order to confirm the veracity of RNA‑sequencing analysis. In addition, Map2k3os small interfering RNA transfection inhibited the expression of stretch‑induced cytokines [TNF‑α, interleukin (IL)‑1β and IL‑6] in MLE12 cells. In conclusion, the results of the present study provided a profile of differentially expressed lncRNAs in VILI. Several important lncRNAs may be involved in the pathological process of VILI, which may be useful to guide further investigation into the pathogenesis for this disease.
Collapse
Affiliation(s)
- Bo Xu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yizhou Wang
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Xiujuan Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yanfei Mao
- Department of Anesthesiology and SICU, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
11
|
Gangoda SVS, Avadhanam B, Jufri NF, Sohn EH, Butlin M, Gupta V, Chung R, Avolio AP. Pulsatile stretch as a novel modulator of amyloid precursor protein processing and associated inflammatory markers in human cerebral endothelial cells. Sci Rep 2018; 8:1689. [PMID: 29374229 PMCID: PMC5786097 DOI: 10.1038/s41598-018-20117-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/15/2018] [Indexed: 01/22/2023] Open
Abstract
Amyloid β (Aβ) deposition is a hallmark of Alzheimer’s disease (AD). Vascular modifications, including altered brain endothelial cell function and structural viability of the blood-brain barrier due to vascular pulsatility, are implicated in AD pathology. Pulsatility of phenomena in the cerebral vasculature are often not considered in in vitro models of the blood-brain barrier. We demonstrate, for the first time, that pulsatile stretch of brain vascular endothelial cells modulates amyloid precursor protein (APP) expression and the APP processing enzyme, β-secretase 1, eventuating increased-Aβ generation and secretion. Concurrent modulation of intercellular adhesion molecule 1 and endothelial nitric oxide synthase (eNOS) signaling (expression and phosphorylation of eNOS) in response to pulsatile stretch indicates parallel activation of endothelial inflammatory pathways. These findings mechanistically support vascular pulsatility contributing towards cerebral Aβ levels.
Collapse
Affiliation(s)
- Sumudu V S Gangoda
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Bhargava Avadhanam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nurul F Jufri
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Eun Hwa Sohn
- Department of Herbal Medicine Resources, Kangwon National University, Samcheok, 25949, Republic of Korea
| | - Mark Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alberto P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
12
|
Fang XZ, Ge YL, Li M, Huang TF, Yang Z, Gao J. Preconditioning of physiological cyclic stretch inhibits the inflammatory response induced by pathologically mechanical stretch in alveolar epithelial cells. Exp Ther Med 2017; 15:2172-2176. [PMID: 29434821 DOI: 10.3892/etm.2017.5611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/28/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate the effects of preconditioning of physiological cyclic stretch (CS) on the overexpression of early pro-inflammatory cytokines [including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-8] during the inflammatory response induced by pathologically mechanical stretch in lung epithelial cells, and to determine its molecular mechanism of action. Cells were subjected to 5% CS for various durations (0, 15, 30, 60 and 120 min) prior to 6 h treatment with pathological 20% CS. In a separate experiment, cells were preconditioned with physiological 5% CS or incubated with a nuclear factor (NF)-κB inhibitor, pyrroldine dithiocarbamate (PDTC). The expression levels of inflammatory mediators were measured using reverse transcription-quantitative polymerase chain reaction. NF-κB was quantified using western blot analysis. Preconditioning with physiological 5% CS for 30, 60 and 120 min was demonstrated to significantly attenuate the release of pathologically mechanical stretch-induced early pro-inflammatory cytokines (TNF-α, IL-1β and IL-8) in alveolar epithelial cells (P<0.05) and significantly reduce the expression of NF-κB (P<0.05). Peak suppression was observed in cells preconditioned for 60 min. In the second set of experiments, it was demonstrated that mechanical stretch-induced release of TNF-α, IL-1β and IL-8 was significantly inhibited by both PDTC pretreatment and 5% CS pretreatment alone (all P<0.05). Furthermore, significant inhibition was also observed when both 5% CS pretreatment and PDTC pretreatment was used on mechanical stretch-induced cells (P<0.05), which was markedly greater than the inhibition induced by either pretreatment alone. The present findings suggest that preconditioning with physiological 5% CS is able to inhibit the inflammatory response induced by pathologically mechanical stretch in alveolar epithelial cells. These anti-inflammatory effects are induced, at least in part, by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Ya-Li Ge
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Min Li
- Department of Anesthesiology, Affiliated People's Hospital of Jiangsu University, Jiangsu 212000, P.R. China
| | - Tian-Feng Huang
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Zhang Yang
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| | - Ju Gao
- Department of Anesthesiology, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
13
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|
14
|
Zhang Y, Gao J, Wang CJ, Zhou LJ, Fang XZ, Yang LQ. Low tidal volume ventilation preconditioning ameliorates lipopolysaccharide-induced acute lung injury in rats. Acta Anaesthesiol Scand 2016; 60:780-9. [PMID: 26822955 DOI: 10.1111/aas.12691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/12/2015] [Accepted: 12/26/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Effects of low tidal volume (LTV) ventilation preconditioning in endotoxin-induced acute lung injury (ALI) have not been studied. We investigated the effect of LTV ventilation pre-treatment on ALI induced by lipopolysaccharide (LPS) in rats. METHODS Male Sprague-Dawley rats were assigned to four groups (n = 8 each): (1) sham rats injected (i.p.) with 0.9% (physiologic) saline; sham rats pre-treated with tidal volume 6 ml/kg ventilation for 1 h followed by injection (i.p.) of physiologic saline (mechanical ventilation; MV-saline group); (2) LPS group (rats injected with LPS (i.p.); rats pre-treated with tidal volume 6 ml/kg ventilation for 1 h before injection (i.p.) with LPS (MV-LPS group). Animals were observed for 6 h. ALI extent was evaluated by lung wet-to-dry ratio, Evans Blue Dye extravasation, and histologic examination. We measured levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. Apoptotic index (AI) and the expression of pulmonary RhoA, ROCK2 mRNA, and ROCK1 protein in lung alveolar cells was determined. RESULTS Lipopolysaccharide caused severe ALI, as evidenced by increases in ALI extent, impairment of pulmonary functions, and increases in pulmonary levels of TNF-α, IL-1β, IL-6, and AI. LTV ventilation preconditioning mitigated LPS-induced increases in release of pulmonary pro-inflammatory cytokines and AI of alveolar cells. Expression of pulmonary RhoA, ROCK2 mRNA, and ROCK1 protein was upregulated by LPS and reduced by LTV ventilation pre-treatment. CONCLUSION Low tidal volume ventilation preconditioning can attenuate release of pulmonary pro-inflammatory cytokines and decrease the AI induced by severe sepsis. Early protection seems to be mediated partly through inhibition of activation of a Rho pathway.
Collapse
Affiliation(s)
- Y. Zhang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - J. Gao
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - C.-J. Wang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - L.-J. Zhou
- Department of Scientific Research; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - X.-Z. Fang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| | - L.-Q. Yang
- Department of Anesthesiology; Clinical Medical School of Yangzhou University; Subei People's Hospital of Jiangsu Province; Yangzhou China
| |
Collapse
|
15
|
An Y, Liu T, Liu X, Zhao L, Wang J. Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes. Biol Trace Elem Res 2016; 170:173-82. [PMID: 26231544 DOI: 10.1007/s12011-015-0456-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022]
Abstract
This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity.
Collapse
Affiliation(s)
- Yuan An
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Tingting Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
16
|
Preconditioning of physiological cyclic stretch attenuated HMGB1 expression in pathologically mechanical stretch-activated A549 cells and ventilator-induced lung injury rats through inhibition of IL-6/STAT3/SOCS3. Int Immunopharmacol 2016; 31:66-73. [DOI: 10.1016/j.intimp.2015.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/24/2023]
|
17
|
Blázquez-Prieto J, López-Alonso I, Amado-Rodríguez L, Batalla-Solís E, González-López A, Albaiceta GM. Exposure to mechanical ventilation promotes tolerance to ventilator-induced lung injury by Ccl3 downregulation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L847-56. [DOI: 10.1152/ajplung.00193.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/14/2015] [Indexed: 01/22/2023] Open
Abstract
Inflammation plays a key role in the development of ventilator-induced lung injury (VILI). Preconditioning with a previous exposure can damp the subsequent inflammatory response. Our objectives were to demonstrate that tolerance to VILI can be induced by previous low-pressure ventilation, and to identify the molecular mechanisms responsible for this phenomenon. Intact 8- to 12-wk-old male CD1 mice were preconditioned with 90 min of noninjurious ventilation [peak pressure 17 cmH2O, positive end-expiratory pressure (PEEP) 2 cmH2O] and extubated. Seven days later, preconditioned mice and intact controls were submitted to injurious ventilation (peak pressure 20 cmH2O, PEEP 0 cmH2O) for 2 h to induce VILI. Preconditioned mice showed lower histological lung injury scores, bronchoalveolar lavage albumin content, and lung neutrophilic infiltration after injurious ventilation, with no differences in Il6 or Il10 expression. Microarray analyses revealed a downregulation of Calcb, Hspa1b, and Ccl3, three genes related to tolerance phenomena, in preconditioned animals. Among the previously identified genes, only Ccl3, which encodes the macrophage inflammatory protein 1 alpha (MIP-1α), showed significant differences between intact and preconditioned mice after high-pressure ventilation. In separate, nonconditioned animals, treatment with BX471, a specific blocker of CCR1 (the main receptor for MIP-1α), decreased lung damage and neutrophilic infiltration caused by high-pressure ventilation. We conclude that previous exposure to noninjurious ventilation induces a state of tolerance to VILI. Downregulation of the chemokine gene Ccl3 could be the mechanism responsible for this effect.
Collapse
Affiliation(s)
- Jorge Blázquez-Prieto
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Inés López-Alonso
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Área de Gestión Clínica de Medicina Intensiva, Hospital Valle del Nalón, Langreo, Spain
| | - Estefanía Batalla-Solís
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Adrián González-López
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité Universitätsmedizin, Berlin, Germany; and
| | - Guillermo M. Albaiceta
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
18
|
Genbačev O, Vićovac L, Larocque N. The role of chorionic cytotrophoblasts in the smooth chorion fusion with parietal decidua. Placenta 2015; 36:716-22. [PMID: 26003500 DOI: 10.1016/j.placenta.2015.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/PURPOSE Human placenta and chorion are rapidly growing transient embryonic organs built from diverse cell populations that are of either, ectodermal [placenta and chorion specific trophoblast (TB) cells], or mesodermal origin [villous core and chorionic mesenchyme]. The development of placenta and chorion is synchronized from the earliest phase of implantation. Little is known about the formative stages of the human chorion, in particular the steps between the formation of a smooth chorion and its fusion with the parietal decidua. METHODS We examined the available histological material using immunohistochemistry, and further analyzed in vitro the characteristics of the recently established and reported human self-renewing trophoblast progenitor cells (TBPC) derived from chorionic mesoderm. RESULTS Here, we provided evidence that the mechanism by which smooth chorion fuses with parietal decidua is the invasion of smooth chorionic cytotrophoblasts (schCTBs) into the uterine wall opposite to the implantation side. This process, which partially replicates some of the mechanisms of the blastocyst implantation, leads to the formation of a new zone of contacts between fetal and maternal cells. CONCLUSION We propose the schCTBs invasion of the parietal decidua as a mechanism of 'fusion' of the membranes, and that schCTBs in vivo contribute to the pool of the invasive schCTB.
Collapse
Affiliation(s)
- O Genbačev
- The Ely and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, USA; Center for Reproductive Sciences, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - L Vićovac
- Laboratory for Biology of Reproduction, Institute INEP, University of Belgrade, Belgrade, Serbia
| | - N Larocque
- The Ely and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, USA; Center for Reproductive Sciences, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Biology, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|