1
|
Shoyer TC, Collins KL, Ham TR, Blanchard AT, Malavade JN, Johns BA, West JL, Hoffman BD. Detection of fluorescent protein mechanical switching in cellulo. CELL REPORTS METHODS 2024; 4:100815. [PMID: 38986612 PMCID: PMC11294842 DOI: 10.1016/j.crmeth.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.
Collapse
Affiliation(s)
- T Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Kasie L Collins
- Department of Chemistry, Duke University, Durham NC 27708, USA
| | - Trevor R Ham
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Aaron T Blanchard
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Juilee N Malavade
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Benjamin A Johns
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham NC 27708, USA.
| |
Collapse
|
2
|
Shoyer TC, Gates EM, Cabe JI, Urs AN, Conway DE, Hoffman BD. Coupling during collective cell migration is controlled by a vinculin mechanochemical switch. Proc Natl Acad Sci U S A 2023; 120:e2316456120. [PMID: 38055737 PMCID: PMC10722971 DOI: 10.1073/pnas.2316456120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023] Open
Abstract
The ability of cells to move in a mechanically coupled, coordinated manner, referred to as collective cell migration, is central to many developmental, physiological, and pathophysiological processes. Limited understanding of how mechanical forces and biochemical regulation interact to affect coupling has been a major obstacle to unravelling the underlying mechanisms. Focusing on the linker protein vinculin, we use a suite of Förster resonance energy transfer-based biosensors to probe its mechanical functions and biochemical regulation, revealing a switch that toggles vinculin between loadable and unloadable states. Perturbation of the switch causes covarying changes in cell speed and coordination, suggesting alteration of the friction within the system. Molecular scale modelling reveals that increasing levels of loadable vinculin increases friction, due to engagement of self-stabilizing catch bonds. Together, this work reveals a regulatory switch for controlling cell coupling and describes a paradigm for relating biochemical regulation, altered mechanical properties, and changes in cell behaviors.
Collapse
Affiliation(s)
- T. Curtis Shoyer
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Evan M. Gates
- Department of Biomedical Engineering, Duke University, Durham, NC27708
| | - Jolene I. Cabe
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA23284
| | - Aarti N. Urs
- Department of Cell Biology, Duke University, Durham, NC27710
| | - Daniel E. Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH43210
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Cell Biology, Duke University, Durham, NC27710
| |
Collapse
|
3
|
Shoyer TC, Gates EM, Cabe JI, Conway DE, Hoffman BD. Coupling During Collective Cell Migration is Controlled by a Vinculin Mechanochemical Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523997. [PMID: 36711698 PMCID: PMC9882183 DOI: 10.1101/2023.01.13.523997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Collective cell migration (CCM) plays important roles in development, physiological, and pathological processes. A key feature of CCM is the dynamic mechanical coupling between cells, which enables both long-range coordination and local rearrangements. This coupling requires the ability of cell adhesions to adapt to forces. Recent efforts have identified key proteins and implicated cellular-scale mechanical properties, but how key proteins give rise to these larger-scale mechanical processes is unclear. Using force-sensitive biosensors, cell migration assays, and molecular clutch models, we sought a molecular understanding of adhesion strengthening that could bridge this gap. We found that the mechanical linker protein vinculin bears substantial loads at AJs, FAs, and in the cytoplasm during epithelial sheet migration, and we identified a switch-like residue on vinculin that regulates its conformation and loading at the AJs during CCM. In vinculin KO-rescue, this switch jointly controlled the speed and coupling length-scale of CCM, which suggested changes in adhesion-based friction. To test this, we developed molecularly detailed friction clutch models of the FA and AJ. They show that open, loaded vinculin increases friction in adhesive structures, with larger affects observed in AJs. Thus, this work elucidates how load-bearing linker proteins can be regulated to alter mechanical properties of cells and enable rapid tuning of mechanical coupling in CCM.
Collapse
|
4
|
Han MKL, van der Krogt GNM, de Rooij J. Zygotic vinculin is not essential for embryonic development in zebrafish. PLoS One 2017; 12:e0182278. [PMID: 28767718 PMCID: PMC5540497 DOI: 10.1371/journal.pone.0182278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
The formation of multicellular tissues during development is governed by mechanical forces that drive cell shape and tissue architecture. Protein complexes at sites of adhesion to the extracellular matrix (ECM) and cell neighbors, not only transmit these mechanical forces, but also allow cells to respond to changes in force by inducing biochemical feedback pathways. Such force-induced signaling processes are termed mechanotransduction. Vinculin is a central protein in mechanotransduction that in both integrin-mediated cell-ECM and cadherin-mediated cell-cell adhesions mediates force-induced cytoskeletal remodeling and adhesion strengthening. Vinculin was found to be important for the integrity and remodeling of epithelial tissues in cell culture models and could therefore be expected to be of broad importance in epithelial morphogenesis in vivo. Besides a function in mouse heart development, however, the importance of vinculin in morphogenesis of other vertebrate tissues has remained unclear. To investigate this further, we knocked out vinculin functioning in zebrafish, which contain two fully functional isoforms designated as vinculin A and vinculin B that both show high sequence conservation with higher vertebrates. Using TALEN and CRISPR-Cas gene editing technology we generated vinculin-deficient zebrafish. While single vinculin A mutants are viable and able to reproduce, additional loss of zygotic vinculin B was lethal after embryonic stages. Remarkably, vinculin-deficient embryos do not show major developmental defects, apart from mild pericardial edemas. These results lead to the conclusion that vinculin is not of broad importance for the development and morphogenesis of zebrafish tissues.
Collapse
Affiliation(s)
- Mitchell K. L. Han
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard N. M. van der Krogt
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
5
|
Bays JL, DeMali KA. Vinculin in cell-cell and cell-matrix adhesions. Cell Mol Life Sci 2017; 74:2999-3009. [PMID: 28401269 PMCID: PMC5501900 DOI: 10.1007/s00018-017-2511-3] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Vinculin was identified as a component of focal adhesions and adherens junctions nearly 40 years ago. Since that time, remarkable progress has been made in understanding its activation, regulation and function. Here we discuss the current understanding of the roles of vinculin in cell–cell and cell–matrix adhesions. Emphasis is placed on the how vinculin is recruited, activated and regulated. We also highlight the recent understanding of how vinculin responds to and transmits force at integrin- and cadherin-containing adhesion complexes to the cytoskeleton. Furthermore, we discuss roles of vinculin in binding to and rearranging the actin cytoskeleton.
Collapse
Affiliation(s)
- Jennifer L Bays
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int 2016; 40:241-56. [DOI: 10.1002/cbin.10563] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wolfgang H. Goldmann
- Department of Biophysics; Friedrich-Alexander-University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
7
|
Auernheimer V, Lautscham LA, Leidenberger M, Friedrich O, Kappes B, Fabry B, Goldmann WH. Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission. J Cell Sci 2015; 128:3435-43. [PMID: 26240176 DOI: 10.1242/jcs.172031] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/27/2015] [Indexed: 01/13/2023] Open
Abstract
The focal adhesion protein vinculin connects the actin cytoskeleton, through talin and integrins, with the extracellular matrix. Vinculin consists of a globular head and tail domain, which undergo conformational changes from a closed auto-inhibited conformation in the cytoplasm to an open conformation in focal adhesions. Src-mediated phosphorylation has been suggested to regulate this conformational switch. To explore the role of phosphorylation in vinculin activation, we used knock-out mouse embryonic fibroblasts re-expressing different vinculin mutants in traction microscopy, magnetic tweezer microrheology, FRAP and actin-binding assays. Compared to cells expressing wild-type or constitutively active vinculin, we found reduced tractions, cytoskeletal stiffness, adhesion strength, and increased vinculin dynamics in cells expressing constitutively inactive vinculin or vinculin where Src-mediated phosphorylation was blocked by replacing tyrosine at position 100 and/or 1065 with a non-phosphorylatable phenylalanine residue. Replacing tyrosine residues with phospho-mimicking glutamic acid residues restored cellular tractions, stiffness and adhesion strength, as well as vinculin dynamics, and facilitated vinculin-actin binding. These data demonstrate that Src-mediated phosphorylation is necessary for vinculin activation, and that phosphorylation controls cytoskeletal mechanics by regulating force transmission between the actin cytoskeleton and focal adhesion proteins.
Collapse
Affiliation(s)
- Vera Auernheimer
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Lena A Lautscham
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Ben Fabry
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| |
Collapse
|