1
|
Yang Q, Ran Y, Guo Y, Zeng J, Song Y, Qiao D, Xu H, Cao Y. Enhancement of lipid synthesis by the transcription factor Asg1 in Saitozyma podzolica zwy-2-3 under dissolved oxygen stress. BIORESOURCE TECHNOLOGY 2024; 411:131312. [PMID: 39168414 DOI: 10.1016/j.biortech.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Zuo F, Wu Y, Sun Y, Xie C, Tang Y. Mechanism of enhanced salt tolerance in Saccharomyces cerevisiae by CRZ1 overexpression. Sci Rep 2024; 14:22875. [PMID: 39358483 PMCID: PMC11447063 DOI: 10.1038/s41598-024-74174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Achieving high-gravity fermentation in the industrial production of fuel ethanol, and enhancing the fermentation efficiency of high-salt raw materials, such as waste molasses, can significantly reduce wastewater output and process costs. Therefore, the development of hyperosmotic-tolerant industrial Saccharomyces cerevisiae strains, capable of resisting high-salt stress, offers both environmental and economic benefits. Our previous study highlighted the potential of CRZ1 overexpression as a strategy to improve the yeast strain's resistance to high-salt stress, however, the underlying molecular mechanisms remain unexplored. The fermentation capabilities of the CRZ1-overexpressing strain, KCR3, and its parental strain, KF7, were evaluated under condition of 1.25 M NaCl at 35 °C. Compared to KF7, KCR3 showed an 81% increase in glucose consumption (129.25 ± 0.83 g/L) and a 105% increase in ethanol production (47.59 ± 0.93 g/L), with a yield of 0.37 g/g. Comparative transcriptomic analysis showed that under high-salt stress, KCR3 exhibited significantly upregulated expression of genes associated with ion transport, stress response, gluconeogenesis, and the utilization of alternative carbon sources, while genes related to glycolysis and the biosynthesis of ribosomes, amino acids, and fatty acids were notably downregulated compared to KF7. Crz1 likely expands its influence by regulating the expression of numerous transcription factors, thereby impacting genes involved in multiple aspects of cellular function. The study revealed the regulatory mechanism of Crz1 under high-salt stress, thereby providing guidance for the construction of salt-tolerant strains.
Collapse
Affiliation(s)
- Furong Zuo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Yajing Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Yanqiu Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Caiyun Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, 610065, Sichuan, China.
| | - Yueqin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
- Engineering Research Center of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, 610065, Sichuan, China
| |
Collapse
|
3
|
Sun W, Wan S, Liu C, Wang R, Zhang H, Qin L, Wang R, Lv B, Li C. Establishing cell suitability for high-level production of licorice triterpenoids in yeast. Acta Pharm Sin B 2024; 14:4134-4148. [PMID: 39309497 PMCID: PMC11413661 DOI: 10.1016/j.apsb.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 09/25/2024] Open
Abstract
Yeast has been an indispensable host for synthesizing complex plant-derived natural compounds, yet the yields remained largely constrained. This limitation mainly arises from overlooking the importance of cell and pathway suitability during the optimization of enzymes and pathways. Herein, beyond conventional enzyme engineering, we dissected metabolic suitability with a framework for simultaneously augmenting cofactors and carbon flux to enhance the biosynthesis of heterogenous triterpenoids. We further developed phospholipid microenvironment engineering strategies, dramatically improving yeast's suitability for the high performance of endoplasmic reticulum (ER)-localized, rate-limiting plant P450s. Combining metabolic and microenvironment suitability by manipulating only three genes, NHMGR (NADH-dependent HMG-CoA reductase), SIP4 (a DNA-binding transcription factor)and GPP1 (Glycerol-1-phosphate phosphohydrolase 1), we enabled the high-level production of 4.92 g/L rare licorice triterpenoids derived from consecutive oxidation of β-amyrin by two P450 enzymes after fermentation optimization. This production holds substantial commercial value, highlighting the critical role of establishing cell suitability in enhancing triterpenoid biosynthesis and offering a versatile framework applicable to various plant natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Wentao Sun
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Shengtong Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chuyan Liu
- The University of Chicago, Chicago, IL 60637, USA
| | - Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haocheng Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Ali SA, Songdech P, Samakkarn W, Duangphakdee O, Soontorngun N. New regulatory role of Znf1 in transcriptional control of pentose phosphate pathway and ATP synthesis for enhanced isobutanol and acid tolerance. Yeast 2024; 41:401-417. [PMID: 38708451 DOI: 10.1002/yea.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.
Collapse
Affiliation(s)
- Syed Azhar Ali
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pattanan Songdech
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Wiwan Samakkarn
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Orawan Duangphakdee
- Native Honeybee and Pollinator Research Center, King Mongkut's University of Technology Thonburi, Ratchaburi, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, School of Bioresources and Technology, Division of Biochemical Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
5
|
Kashyap I, Deb R, Battineni A, Nagotu S. Acyl CoA oxidase: from its expression, structure, folding, and import to its role in human health and disease. Mol Genet Genomics 2023; 298:1247-1260. [PMID: 37555868 DOI: 10.1007/s00438-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
β-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.
Collapse
Affiliation(s)
- Isha Kashyap
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhigna Battineni
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Adaptive Response of Saccharomyces Hosts to Totiviridae L-A dsRNA Viruses Is Achieved through Intrinsically Balanced Action of Targeted Transcription Factors. J Fungi (Basel) 2022; 8:jof8040381. [PMID: 35448612 PMCID: PMC9028071 DOI: 10.3390/jof8040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Totiviridae L-A virus is a widespread yeast dsRNA virus. The persistence of the L-A virus alone appears to be symptomless, but the concomitant presence of a satellite M virus provides a killer trait for the host cell. The presence of L-A dsRNA is common in laboratory, industrial, and wild yeasts, but little is known about the impact of the L-A virus on the host’s gene expression. In this work, based on high-throughput RNA sequencing data analysis, the impact of the L-A virus on whole-genome expression in three different Saccharomyces paradoxus and S. cerevisiae host strains was analyzed. In the presence of the L-A virus, moderate alterations in gene expression were detected, with the least impact on respiration-deficient cells. Remarkably, the transcriptional adaptation of essential genes was limited to genes involved in ribosome biogenesis. Transcriptional responses to L-A maintenance were, nevertheless, similar to those induced upon stress or nutrient availability. Based on these data, we further dissected yeast transcriptional regulators that, in turn, modulate the cellular L-A dsRNA levels. Our findings point to totivirus-driven fine-tuning of the transcriptional landscape in yeasts and uncover signaling pathways employed by dsRNA viruses to establish the stable, yet allegedly profitless, viral infection of fungi.
Collapse
|
7
|
Pais P, Vagueiro S, Mil-Homens D, Pimenta AI, Viana R, Okamoto M, Chibana H, Fialho AM, Teixeira MC. A new regulator in the crossroads of oxidative stress resistance and virulence in Candida glabrata: The transcription factor CgTog1. Virulence 2021; 11:1522-1538. [PMID: 33135521 PMCID: PMC7605352 DOI: 10.1080/21505594.2020.1839231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Candida glabrata is a prominent pathogenic yeast which exhibits a unique ability to survive the harsh environment of host immune cells. In this study, we describe the role of the transcription factor encoded by the gene CAGL0F09229g, here named CgTog1 after its Saccharomyces cerevisiae ortholog, as a new determinant of C. glabrata virulence. Interestingly, Tog1 is absent in the other clinically relevant Candida species (C. albicans, C. parapsilosis, C. tropicalis, C. auris), being exclusive to C. glabrata. CgTog1 was found to be required for oxidative stress resistance and for the modulation of reactive oxygen species inside C. glabrata cells. Also, CgTog1 was observed to be a nuclear protein, whose activity up-regulates the expression of 147 genes and represses 112 genes in C. glabrata cells exposed to H2O2, as revealed through RNA-seq-based transcriptomics analysis. Given the importance of oxidative stress response in the resistance to host immune cells, the effect of CgTOG1 expression in yeast survival upon phagocytosis by Galleria mellonella hemocytes was evaluated, leading to the identification of CgTog1 as a determinant of yeast survival upon phagocytosis. Interestingly, CgTog1 targets include many whose expression changes in C. glabrata cells after engulfment by macrophages, including those involved in reprogrammed carbon metabolism, glyoxylate cycle and fatty acid degradation. In summary, CgTog1 is a new and specific regulator of virulence in C. glabrata, contributing to oxidative stress resistance and survival upon phagocytosis by host immune cells.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Susana Vagueiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Dalila Mil-Homens
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Andreia I Pimenta
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Michiyo Okamoto
- Medical Mycology Research Center (MMRC), Chiba University , Chiba, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University , Chiba, Japan
| | - Arsénio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa , Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico , Lisboa, Portugal
| |
Collapse
|
8
|
Xie CY, Yang BX, Song QR, Xia ZY, Gou M, Tang YQ. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Microb Cell Fact 2020; 19:211. [PMID: 33187525 PMCID: PMC7666519 DOI: 10.1186/s12934-020-01474-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/07/2020] [Indexed: 01/27/2023] Open
Abstract
Background Xylitol accumulation is a major barrier for efficient ethanol production through heterologous xylose reductase-xylitol dehydrogenase (XR-XDH) pathway in recombinant Saccharomyces cerevisiae. Mutated NADH-preferring XR is usually employed to alleviate xylitol accumulation. However, it remains unclear how mutated XR affects the metabolic network for xylose metabolism. In this study, haploid and diploid strains were employed to investigate the transcriptional responses to changes in cofactor preference of XR through RNA-seq analysis during xylose fermentation. Results For the haploid strains, genes involved in xylose-assimilation (XYL1, XYL2, XKS1), glycolysis, and alcohol fermentation had higher transcript levels in response to mutated XR, which was consistent with the improved xylose consumption rate and ethanol yield. For the diploid strains, genes related to protein biosynthesis were upregulated while genes involved in glyoxylate shunt were downregulated in response to mutated XR, which might contribute to the improved yields of biomass and ethanol. When comparing the diploids with the haploids, genes involved in glycolysis and MAPK signaling pathway were significantly downregulated, while oxidative stress related transcription factors (TFs) were significantly upregulated, irrespective of the cofactor preference of XR. Conclusions Our results not only revealed the differences in transcriptional responses of the diploid and haploid strains to mutated XR, but also provided underlying basis for better understanding the differences in xylose metabolism between the diploid and haploid strains.
Collapse
Affiliation(s)
- Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Qing-Ran Song
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
9
|
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:258. [PMID: 30258492 PMCID: PMC6151946 DOI: 10.1186/s13068-018-1256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. METHODS AND RESULTS To elucidate the mechanisms of S. cerevisiae D5A oleaginicity, we compared physiological and metabolic changes; as well as the transcriptional profiles of the oleaginous industrial strain, D5A, and a non-oleaginous laboratory strain, BY4741, under normal and nitrogen-limited conditions using analytic techniques and next-generation sequencing-based RNA-Seq transcriptomics. Transcriptional levels for genes associated with fatty acid biosynthesis, nitrogen metabolism, amino acid catabolism, as well as the pentose phosphate pathway and ethanol oxidation in central carbon (C) metabolism, were up-regulated in D5A during nitrogen deprivation. Despite increased carbon flux to lipids, most gene-encoding enzymes involved in triacylglycerol (TAG) assembly were expressed at similar levels regardless of the varying nitrogen concentrations in the growth media and strain backgrounds. Phospholipid turnover also contributed to TAG accumulation through increased precursor production with the down-regulation of subsequent phospholipid synthesis steps. Our results also demonstrated that nitrogen assimilation via the glutamate-glutamine pathway and amino acid metabolism, as well as the fluxes of carbon and reductants from central C metabolism, are integral to the general oleaginicity of D5A, which resulted in the enhanced lipid storage during nitrogen deprivation. CONCLUSION This work demonstrated the disequilibrium and rebalance of carbon and nitrogen contribution to the accumulation of lipids in the oleaginous yeast S. cerevisiae D5A. Rather than TAG assembly from acyl groups, the major switches for the enhanced lipid accumulation of D5A (i.e., fatty acid biosynthesis) are the increases of cytosolic pools of acetyl-CoA and NADPH, as well as alternative nitrogen assimilation.
Collapse
Affiliation(s)
- Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | | | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
10
|
Cheng C, Tang RQ, Xiong L, Hector RE, Bai FW, Zhao XQ. Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:28. [PMID: 29441126 PMCID: PMC5798184 DOI: 10.1186/s13068-018-1018-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae wild strains generally have poor xylose-utilization capability, which is a major barrier for efficient bioconversion of lignocellulosic biomass. Laboratory adaption is commonly used to enhance xylose utilization of recombinant S. cerevisiae. Apparently, yeast cells could remodel the metabolic network for xylose metabolism. However, it still remains unclear why natural isolates of S. cerevisiae poorly utilize xylose. Here, we analyzed a unique S. cerevisiae natural isolate YB-2625 which has superior xylose metabolism capability in the presence of mixed-sugar. Comparative transcriptomic analysis was performed using S. cerevisiae YB-2625 grown in a mixture of glucose and xylose, and the model yeast strain S288C served as a control. Global gene transcription was compared at both the early mixed-sugar utilization stage and the latter xylose-utilization stage. RESULTS Genes involved in endogenous xylose-assimilation (XYL2 and XKS1), gluconeogenesis, and TCA cycle showed higher transcription levels in S. cerevisiae YB-2625 at the xylose-utilization stage, when compared to the reference strain. On the other hand, transcription factor encoding genes involved in regulation of glucose repression (MIG1, MIG2, and MIG3) as well as HXK2 displayed decreased transcriptional levels in YB-2625, suggesting the alleviation of glucose repression of S. cerevisiae YB-2625. Notably, genes encoding antioxidant enzymes (CTT1, CTA1, SOD2, and PRX1) showed higher transcription levels in S. cerevisiae YB-2625 in the xylose-utilization stage than that of the reference strain. Consistently, catalase activity of YB-2625 was 1.9-fold higher than that of S. cerevisiae S288C during the xylose-utilization stage. As a result, intracellular reactive oxygen species levels of S. cerevisiae YB-2625 were 43.3 and 58.6% lower than that of S288C at both sugar utilization stages. Overexpression of CTT1 and PRX1 in the recombinant strain S. cerevisiae YRH396 deriving from S. cerevisiae YB-2625 increased cell growth when xylose was used as the sole carbon source, leading to 13.5 and 18.1%, respectively, more xylose consumption. CONCLUSIONS Enhanced oxidative stress tolerance and relief of glucose repression are proposed to be two major mechanisms for superior xylose utilization by S. cerevisiae YB-2625. The present study provides insights into the innate regulatory mechanisms underlying xylose utilization in wild-type S. cerevisiae, which benefits the rapid development of robust yeast strains for lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Ronald E. Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL USA
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
11
|
Somboon P, Poonsawad A, Wattanachaisaereekul S, Jensen LT, Niimi M, Cheevadhanarak S, Soontorngun N. Fungicide Xylaria sp. BCC 1067 extract induces reactive oxygen species and activates multidrug resistance system in Saccharomyces cerevisiae. Future Microbiol 2017; 12:417-440. [PMID: 28361556 DOI: 10.2217/fmb-2016-0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To investigate antifungal potential of Xylaria sp. BIOTEC culture collection (BCC) 1067 extract against the model yeast Saccharomyces cerevisiae. MATERIALS & METHODS Antifungal property of extract, reactive oxygen species levels and cell survival were determined, using selected deletion strains. RESULTS Extract showed promising antifungal effect with minimal inhibitory concentration100 and minimal fungicidal concentration of 500 and 1000 mg/l, respectively. Strong synergy was observed with fractional inhibitory concentration index value of 0.185 for the combination of 60.0 and 0.5 mg/l of extract and ketoconazole, respectively. Extract-induced intracellular reactive oxygen species levels in some oxidant-prone strains and mediated plasma membrane rupture. Antioxidant regulator Yap1, efflux transporter Pdr5 and ascorbate were pivotal to protect S. cerevisiae from extract cytotoxicity. CONCLUSION Xylaria sp. BCC 1067 extract is a potentially valuable source of novel antifungals.
Collapse
Affiliation(s)
- Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Attaporn Poonsawad
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant & Development Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Masakazu Niimi
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Pilot Plant & Development Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
12
|
Reprogramming of nonfermentative metabolism by stress-responsive transcription factors in the yeast Saccharomyces cerevisiae. Curr Genet 2016; 63:1-7. [PMID: 27180089 DOI: 10.1007/s00294-016-0609-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 12/15/2022]
Abstract
The fundamental questions of how cells control growth and respond to stresses have captivated scientists for years. Despite the complexity of these cellular processes, we could approach this puzzle by asking our favorite model yeast, Saccharomyces cerevisiae, how it makes a critical decision to either proliferate, to rest in a quiescent state or to program itself to die. This review highlights the essentiality of transcriptional factors in the reprogramming of gene expression as a prime mechanism of cellular stress responses. A whelm of evidence shows that transcriptional factors allow cells to acquire appropriate and unified responses to the transmitted signals. They function to modulate pathway-specific gene expression and organize transcriptomic responses to the altered environments. This review is aimed to summarize current knowledge on the roles of novel and well-known yeast transcription factors in the control of growth and stress responses during glucose deprivation as a prototypical case study. The scope includes stress sensing, transcription factors' identity, gene regulation and proposed crosstalks between pathways, associated with stress responses. A complex commander system of multiple stress-responsive transcription factors, observed here and elsewhere, indicates that regulation of glucose starvation/diauxic shift is a highly sophisticated and well-controlled process, involving elaborative networks of different kinase/target proteins. Using S. cerevisiae as a model, basic genetic research studies on gene identification have once again proved to be essential in the comprehension of molecular basis of cellular stress responses. Insights into this fundamental and highly conserved phenomenon will endow important prospective impacts on biotechnological applications and healthcare improvement.
Collapse
|
13
|
Jansuriyakul S, Somboon P, Rodboon N, Kurylenko O, Sibirny A, Soontorngun N. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 100:4549-60. [PMID: 26875874 DOI: 10.1007/s00253-016-7356-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 01/22/2023]
Abstract
In this study, we characterize a new function for activator of stress response genes (Asg1) in fatty acid utilization. Asg1 is required for full activation of genes in several pathways, including β-oxidation (POX1, FOX2, and POT1), gluconeogenesis (PCK1), glyoxylate cycle (ICL1), triacylglycerol breakdown (TGL3), and peroxisomal transport (PXA1). In addition, the transcriptional activator Asg1 is found to be enriched on promoters of genes in β-oxidation and gluconeogenesis pathways, suggesting that Asg1 is directly involved in the control of fatty acid utilizing genes. In agreement, impaired growth on non-fermentable carbons such as fatty acids and oils and increased sensitivity to some oxidative agents are found for the Δasg1 strain. The lipid class profile of the Δasg1 cells grown in oleate displays approximately 3-fold increase in free fatty acid (FFA) content in comparison to glucose-grown cells, which correlates with decreased expression of β-oxidation genes. The ∆asg1 strain grown in glucose also exhibits higher accumulation of triacylglycerols (TAGs) during log phase, reaching levels typically observed in stationary phase cells. Altered TAG accumulation is partly due to the inability of the Δasg1 cells to efficiently break down TAGs, which is consistent with lowered expression of TGL3 gene, encoding triglycerol lipase. Overall, these results highlight a new role of the transcriptional regulator Asg1 in coordinating expression of genes involved in fatty acid utilization and its role in regulating cellular lipid accumulation, thereby providing an attractive approach to increase FFAs and TAGs content for the production of lipid-derived biofuels and chemicals in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Siripat Jansuriyakul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand
| | - Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand
| | - Napachai Rodboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand
| | - Olena Kurylenko
- NAS of Ukraine, Institute of Cell Biology, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy Sibirny
- NAS of Ukraine, Institute of Cell Biology, Drahomanov Street, 14/16, Lviv, 79005, Ukraine.,Department of Bioetchnology and Microbiology, University of Rzeszow, Zelwerowicza Street, 4, 35-601, Rzeszow, Poland
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand.
| |
Collapse
|
14
|
Tangsombatvichit P, Semkiv MV, Sibirny AA, Jensen LT, Ratanakhanokchai K, Soontorngun N. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fou002. [PMID: 25673751 DOI: 10.1093/femsyr/fou002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability to rapidly respond to nutrient changes is a fundamental requirement for cell survival. Here, we show that the zinc cluster regulator Znf1 responds to altered nutrient signals following glucose starvation through the direct control of genes involved in non-fermentative metabolism, including those belonged to the central pathways of gluconeogenesis (PCK1, FBP1 and MDH2), glyoxylate shunt (MLS1 and ICL1) and the tricarboxylic acid cycle (ACO1), which is demonstrated by Znf1-binding enrichment at these promoters during the glucose-ethanol shift. Additionally, reduced Pck1 and Fbp1 enzymatic activities correlate well with the data obtained from gene transcription analysis. Cells deleted for ZNF1 also display defective mitochondrial morphology with unclear structures of the inner membrane cristae when grown in ethanol, in agreement with the substantial reduction in the ATP content, suggesting for roles of Znf1 in maintaining mitochondrial morphology and function. Furthermore, Znf1 also plays a role in tolerance to pH and osmotic stress, especially during the oxidative metabolism. Taken together, our results clearly suggest that Znf1 is a critical transcriptional regulator for stress adaptation during non-fermentative growth with some partial overlapping targets with previously reported regulators in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Pitchya Tangsombatvichit
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Marta V Semkiv
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow 35-601, Poland
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|