1
|
Shi B, Matsui T, Qian S, Weiss TM, Nicholl ID, Callaway DJE, Bu Z. An ensemble of cadherin-catenin-vinculin complex employs vinculin as the major F-actin binding mode. Biophys J 2023; 122:2456-2474. [PMID: 37147801 PMCID: PMC10323030 DOI: 10.1016/j.bpj.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.
Collapse
Affiliation(s)
- Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Shuo Qian
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York.
| |
Collapse
|
2
|
Hakibilen C, Delort F, Daher MT, Joanne P, Cabet E, Cardoso O, Bourgois-Rocha F, Tian C, Rivas E, Madruga M, Ferreiro A, Lilienbaum A, Vicart P, Agbulut O, Hénon S, Batonnet-Pichon S. Desmin Modulates Muscle Cell Adhesion and Migration. Front Cell Dev Biol 2022; 10:783724. [PMID: 35350386 PMCID: PMC8957967 DOI: 10.3389/fcell.2022.783724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Cellular adhesion and migration are key functions that are disrupted in numerous diseases. We report that desmin, a type-III muscle-specific intermediate filament, is a novel cell adhesion regulator. Expression of p.R406W mutant desmin, identified in patients with desmin-related myopathy, modified focal adhesion area and expression of adhesion-signaling genes in myogenic C2C12 cells. Satellite cells extracted from desmin-knock-out (DesKO) and desmin-knock-in-p.R405W (DesKI-R405W) mice were less adhesive and migrated faster than those from wild-type mice. Moreover, we observed mislocalized and aggregated vinculin, a key component of cell adhesion, in DesKO and DesKI-R405W muscles. Vinculin expression was also increased in desmin-related myopathy patient muscles. Together, our results establish a novel role for desmin in cell-matrix adhesion, an essential process for strength transmission, satellite cell migration and muscle regeneration. Our study links the patho-physiological mechanisms of desminopathies to adhesion/migration defects, and may lead to new cellular targets for novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Pierre Joanne
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Eva Cabet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | | | - Cuixia Tian
- Department of Neurology, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Eloy Rivas
- Servicio de Anatomia Patologica, Hospital Universitario Virgen Del Rocio, Sevilla, Spain
| | - Marcos Madruga
- Unidad de Neurologia Pediatrica, Hospital Universitario Virgen Del Rocio, Sevilla, Spain
| | - Ana Ferreiro
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,APHP, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile-de-France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Patrick Vicart
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France.,Université de Paris, MSC, UMR 7067, CNRS, Paris, France.,Department of Neurology, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Servicio de Anatomia Patologica, Hospital Universitario Virgen Del Rocio, Sevilla, Spain.,Unidad de Neurologia Pediatrica, Hospital Universitario Virgen Del Rocio, Sevilla, Spain.,APHP, Centre de Référence Maladies Neuromusculaires Nord/Est/Ile-de-France, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Sylvie Hénon
- Université de Paris, MSC, UMR 7067, CNRS, Paris, France
| | | |
Collapse
|