1
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
2
|
Muszyński A, Zarember KA, Heiss C, Shiloach J, Berg LJ, Audley J, Kozyr A, Greenberg DE, Holland SM, Malech HL, Azadi P, Carlson RW, Gallin JI. Granulibacter bethesdensis, a Pathogen from Patients with Chronic Granulomatous Disease, Produces a Penta-Acylated Hypostimulatory Glycero-D-talo-oct-2-ulosonic Acid-Lipid A Glycolipid (Ko-Lipid A). Int J Mol Sci 2021; 22:3303. [PMID: 33804872 PMCID: PMC8036547 DOI: 10.3390/ijms22073303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-β-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.
Collapse
Affiliation(s)
- Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Joseph Shiloach
- Biotechnology Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Lars J. Berg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - John Audley
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Arina Kozyr
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - David E. Greenberg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - John I. Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| |
Collapse
|
3
|
Joo SH, Pemble CW, Yang EG, Raetz CRH, Chung HS. Biochemical and Structural Insights into an Fe(II)/α-Ketoglutarate/O 2-Dependent Dioxygenase, Kdo 3-Hydroxylase (KdoO). J Mol Biol 2018; 430:4036-4048. [PMID: 30092253 DOI: 10.1016/j.jmb.2018.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022]
Abstract
During lipopolysaccharide biosynthesis in several pathogens, including Burkholderia and Yersinia, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) 3-hydroxylase, otherwise referred to as KdoO, converts Kdo to d-glycero-d-talo-oct-2-ulosonic acid (Ko) in an Fe(II)/α-ketoglutarate (α-KG)/O2-dependent manner. This conversion renders the bacterial outer membrane more stable and resistant to stresses such as an acidic environment. KdoO is a membrane-associated, deoxy-sugar hydroxylase that does not show significant sequence identity with any known enzymes, and its structural information has not been previously reported. Here, we report the biochemical and structural characterization of KdoO, Minf_1012 (KdoMI), from Methylacidiphilum infernorum V4. The de novo structure of KdoMI apoprotein indicates that KdoOMI consists of 13 α helices and 11 β strands, and has the jelly roll fold containing a metal binding motif, HXDX111H. Structures of KdoMI bound to Co(II), KdoMI bound to α-KG and Fe(III), and KdoMI bound to succinate and Fe(III), in addition to mutagenesis analysis, indicate that His146, His260, and Asp148 play critical roles in Fe(II) binding, while Arg127, Arg162, Arg174, and Trp176 stabilize α-KG. It was also observed that His225 is adjacent to the active site and plays an important role in the catalysis of KdoOMI without affecting substrate binding, possibly being involved in oxygen activation. The crystal structure of KdoOMI is the first completed structure of a deoxy-sugar hydroxylase, and the data presented here have provided mechanistic insights into deoxy-sugar hydroxylase, KdoO, and lipopolysaccharide biosynthesis.
Collapse
Affiliation(s)
- Sang Hoon Joo
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacy, Daegu Catholic University, Gyeongbuk 38430, South Korea
| | - Charles W Pemble
- Duke Macromolecular Crystallography Center, Duke University Medical Center, Durham, NC 27710, USA; Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hak Suk Chung
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
4
|
Hassan AA, Maldonado RF, Dos Santos SC, Di Lorenzo F, Silipo A, Coutinho CP, Cooper VS, Molinaro A, Valvano MA, Sá-Correia I. Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Front Microbiol 2017. [PMID: 28642745 PMCID: PMC5462993 DOI: 10.3389/fmicb.2017.01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen associated with chronic lung infections and increased risk of death in patients with cystic fibrosis (CF). In this work, we investigated the lipopolysaccharide (LPS) of clinical variants of B. cenocepacia that were collected from a CF patient over a period of 3.5 years, from the onset of infection until death by necrotizing pneumonia (cepacia syndrome). We report the chemical structure of the LPS molecule of various sequential isolates and the identification of a novel hybrid O-antigen (OAg) biosynthetic cluster. The OAg repeating unit of the LPS from IST439, the initial isolate, is a [→2)-β-D-Ribf-(1→4)-α-D-GalpNAc-(1→] disaccharide, which was not previously described in B. cenocepacia. The IST439 OAg biosynthetic gene cluster contains 7 of 23 genes that are closely homologous to genes found in B. multivorans, another member of the Burkholderia cepacia complex. None of the subsequent isolates expressed OAg. Genomic sequencing of these isolates enabled the identification of mutations within the OAg cluster, but none of these mutations could be associated with the loss of OAg. This study provides support to the notion that OAg LPS modifications are an important factor in the adaptation of B. cenocepacia to chronic infection and that the heterogeneity of OAgs relates to variation within the OAg gene cluster, indicating that the gene cluster might have been assembled through multiple horizontal transmission events.
Collapse
Affiliation(s)
- A A Hassan
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Rita F Maldonado
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Sandra C Dos Santos
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Carla P Coutinho
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PittsburghPA, United States
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University BelfastBelfast, United Kingdom
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
5
|
Fathy Mohamed Y, Hamad M, Ortega XP, Valvano MA. The LpxL acyltransferase is required for normal growth and penta-acylation of lipid A in Burkholderia cenocepacia. Mol Microbiol 2017; 104:144-162. [PMID: 28085228 DOI: 10.1111/mmi.13618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
Abstract
Lipid A anchors the lipopolysaccharide (LPS) to the outer membrane and is usually composed of a hexa-acylated diglucosamine backbone. Burkholderia cenocepacia, an opportunistic pathogen, produces a mixture of tetra- and penta-acylated lipid A. "Late" acyltransferases add secondary acyl chains to lipid A after the incorporation of four primary acyl chains to the diglucosamine backbone. Here, we report that B. cenocepacia has only one late acyltransferase, LpxL (BCAL0508), which adds a myristoyl chain to the 2' position of lipid A resulting in penta-acylated lipid A. We also identified PagL (BCAL0788), which acts as an outer membrane lipase by removing the primary β-hydroxymyristate (3-OH-C14:0) chain at the 3 position, leading to tetra-acylated lipid A. Unlike PagL, LpxL depletion caused reduced cell growth and defects in cell morphology, both of which were suppressed by overexpressing the LPS flippase MsbA (BCAL2408), suggesting that lipid A molecules lacking the fifth acyl chain contributed by LpxL are not good substrates for the flippase. We also show that intracellular B. cenocepacia within macrophages produced more penta-acylated lipid A, suggesting lipid A penta-acylation in B. cenocepacia is required not only for bacterial growth and morphology but also for adaptation to intracellular lifestyle.
Collapse
Affiliation(s)
- Yasmine Fathy Mohamed
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamad Hamad
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Ximena P Ortega
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Miguel A Valvano
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| |
Collapse
|