1
|
Li H, Rong Z, Wang H, Zhang N, Pu C, Zhao Y, Zheng X, Lei C, Liu Y, Luo X, Chen J, Wang F, Wang A, Wang J. Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol Sex Differ 2020; 11:46. [PMID: 32792008 PMCID: PMC7427087 DOI: 10.1186/s13293-020-00316-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and is highly malignant. Male prevalence and frequent activation of the Ras signaling pathway are distinct characteristics of HCC. However, the underlying mechanisms remain to be elucidated. By exploring Hras12V transgenic mice showing male-biased hepatocarcinogenesis, we performed a high-throughput comparative proteomic analysis based on tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the tissue samples obtained from HCC (T) and their paired adjacent precancerous (P) of Hras12V transgenic male and female mice (Ras-Tg) and normal liver (W) of wild-type male and female mice (Non-Tg). The further validation and investigation were performed using quantitative real-time PCR and western blot. Totally, 5193 proteins were quantified, originating from 5733 identified proteins. Finally, 1344 differentially expressed proteins (DEPs) (quantified in all examined samples; |ratios| ≥ 1.5, p < 0.05) were selected for further analysis. Comparison within W, P, and T of males and females indicated that the number of DEPs in males was much higher than that in females. Bioinformatics analyses showed the common and unique cluster-enriched items between sexes, indicating the common and gender-disparate pathways towards HCC. Expression change pattern analysis revealed HCC positive/negative-correlated and ras oncogene positive/negative-correlated DEPs and pathways. In addition, it showed that the ras oncogene gradually and significantly reduced the responses to sex hormones from hepatocytes to hepatoma cells and therefore shrunk the gender disparity between males and females, which may contribute to the cause of the loss of HCC clinical responses to the therapeutic approaches targeting sex hormone pathways. Additionally, gender disparity in the expression levels of key enzymes involved in retinol metabolism and terpenoid backbone/steroid biosynthesis pathways may contribute to male prevalence in hepatocarcinogenesis. Further, the biomarkers, SAA2, Orm2, and Serpina1e, may be sex differences. In conclusion, common and unique DEPs and pathways toward HCC initiated by ras oncogene from sexually dimorphic hepatocytes provide valuable and novel insights into clinical investigation and practice.
Collapse
Affiliation(s)
- Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Hong Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chunwen Pu
- Department of Biobank, The Affiliated Sixth People's Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yi Zhao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xu Zheng
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chuanyi Lei
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
2
|
mTOR and ERK regulate VKORC1 expression in both hepatoma cells and hepatocytes which influence blood coagulation. Clin Exp Med 2018; 19:121-132. [PMID: 30306378 DOI: 10.1007/s10238-018-0528-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/22/2018] [Indexed: 02/08/2023]
Abstract
Deficiency of γ-glutamyl carboxylation of coagulation factors, as evidenced by the elevated level of Des-γ-carboxyl prothrombin (DCP), is a common feature in hepatocellular carcinoma patients. Additionally, treatment of cancer patients with mTOR inhibitors significantly increases hemorrhagic events. However, the underlying mechanisms remain unknown. In the present study, Vitamin K epoxide reductase complex subunit 1 (VKORC1) was found to be significantly down-regulated in clinical hepatoma tissues and most tested hepatoma cell lines. In vitro investigations showed that VKORC1 expression was promoted by p-mTOR at the translational level and repressed by p-ERK at the transcriptional level. By exploring Hras12V transgenic mice, a hepatic tumor model, VKROC1 was significantly down-regulated in hepatic tumors and showed prolonged activated partial prothrombin time (APTT). In vivo investigations further showed that VKORC1 expression was promoted by p-mTOR and repressed by p-ERK in both hepatoma and hepatocytes. Consistently, APTT and prothrombin time were significantly prolonged under the mTOR inhibitor treatment and significantly shortened under the ERK inhibitor treatment. Conclusively, these findings indicate that mTOR and ERK play crucial roles in controlling VKORC1 expression in both hepatoma and hepatocytes, which provides a valuable molecular basis for preventing hemorrhage in clinical therapies.
Collapse
|
3
|
Fan T, Rong Z, Dong J, Li J, Wang K, Wang X, Li H, Chen J, Wang F, Wang J, Wang A. Metabolomic and transcriptomic profiling of hepatocellular carcinomas in Hras12V transgenic mice. Cancer Med 2017; 6:2370-2384. [PMID: 28941178 PMCID: PMC5633588 DOI: 10.1002/cam4.1177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022] Open
Abstract
Activation of the Ras/MAPK pathway is prevalently involved in the occurrence and development of hepatocellular carcinoma (HCC). However, its effects on the deregulated cellular metabolic processes involved in HCC in vivo remain unknown. In this study, a mouse model of HCC induced by hepatocyte-specific expression of the Hras12V oncogene was investigated using an integrative analysis of metabolomics and transcriptomics data. Consistent with the phenotype of abundant lipid droplets in HCC, the lipid biosynthesis in HCC was significantly enhanced by (1) a sufficient supply of acetyl-CoA from enhanced glycolysis and citrate shuttle activity; (2) a sufficient supply of NADPH from enhanced pentose phosphate pathway (PPP) activity; (3) upregulation of key enzymes associated with lipid biosynthesis; and (4) downregulation of key enzymes associated with bile acid biosynthesis. In addition, glutathione (GSH) was significantly elevated, which may result from a sufficient supply of 5-oxoproline and L-glutamate as well as an enhanced reduction in the process of GSSG being turned into GSH by NADPH. The high level of GSH along with elevated Bcl2 and Ucp2 expression may contribute to a normal level of reactive oxygen species (ROS) in HCC. In conclusion, our results suggest that the lipid metabolism, glycolysis, PPP, tricarboxylic acid (TCA) cycle, citrate shuttle activity, bile acid synthesis, and redox homeostasis in the HCC induced by ras oncogene are significantly perturbed, and these altered metabolic processes may play crucial roles in the carcinogenesis, development, and pathological characteristics of HCC.
Collapse
Affiliation(s)
- Tingting Fan
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Zhuona Rong
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Jianyi Dong
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Juan Li
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Kangwei Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Xinxin Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Huiling Li
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Jun Chen
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Fujin Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Jingyu Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| | - Aiguo Wang
- Laboratory animal center, Dalian medical University, Dalian, Liaoning, 116044, China
| |
Collapse
|
4
|
Becares N, Gage MC, Pineda-Torra I. Posttranslational Modifications of Lipid-Activated Nuclear Receptors: Focus on Metabolism. Endocrinology 2017; 158:213-225. [PMID: 27925773 PMCID: PMC5413085 DOI: 10.1210/en.2016-1577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/02/2016] [Indexed: 12/18/2022]
Abstract
Posttranslational modifications (PTMs) occur to nearly all proteins, are catalyzed by specific enzymes, and are subjected to tight regulation. They have been shown to be a powerful means by which the function of proteins can be modified, resulting in diverse effects. Technological advances such as the increased sensitivity of mass spectrometry-based techniques and availability of mutant animal models have enhanced our understanding of the complexities of their regulation and the effect they have on protein function. However, the role that PTMs have in a pathological context still remains unknown for the most part. PTMs enable the modulation of nuclear receptor function in a rapid and reversible manner in response to varied stimuli, thereby dramatically altering their activity in some cases. This review focuses on acetylation, phosphorylation, SUMOylation, and O-GlcNAcylation, which are the 4 most studied PTMs affecting lipid-regulated nuclear receptor biology, as well as on the implications of such modifications on metabolic pathways under homeostatic and pathological situations. Moreover, we review recent studies on the modulation of PTMs as therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Natalia Becares
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| | - Matthew C Gage
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| | - Inés Pineda-Torra
- Centre for Clinical Pharmacology, Division of Medicine, University College of London, London, United Kingdom
| |
Collapse
|