1
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Abstract
Activation of the adenosine monophosphate (AMP)-activated kinase (AMPK) contributes to beneficial effects such as improvement of the hyperglycemic state in diabetes as well as reduction of obesity and inflammatory processes. Furthermore, stimulation of AMPK activity has been associated with increased exercise capacity. A study published in 2008, directly before the Olympic Games in Beijing, showed that the AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide) increased the running capacity of mice without any training and thus, prompted the World Anti-Doping Agency (WADA) to include certain AMPK activators in the list of forbidden drugs. This raises the question as to whether all AMPK activators should be considered for registration or whether the increase in exercise performance is only associated with specific AMPK-activating substances. In this review, we intend to shed light on currently published AMPK-activating drugs, their working mechanisms, and their impact on body fitness.
Collapse
|
3
|
Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 2016; 48:e224. [PMID: 27034026 PMCID: PMC4855276 DOI: 10.1038/emm.2016.16] [Citation(s) in RCA: 546] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.
Collapse
Affiliation(s)
- Joungmok Kim
- Depatment of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Goowon Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yeji Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jin Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Goto A, Egawa T, Sakon I, Oshima R, Ito K, Serizawa Y, Sekine K, Tsuda S, Goto K, Hayashi T. Heat stress acutely activates insulin-independent glucose transport and 5'-AMP-activated protein kinase prior to an increase in HSP72 protein in rat skeletal muscle. Physiol Rep 2015; 3:3/11/e12601. [PMID: 26542263 PMCID: PMC4632964 DOI: 10.14814/phy2.12601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat stress (HS) stimulates heat shock protein (HSP) 72 mRNA expression, and the period after an increase in HSP72 protein is characterized by enhanced glucose metabolism in skeletal muscle. We have hypothesized that, prior to an increase in the level of HSP72 protein, HS activates glucose metabolism by acutely stimulating 5'-AMP-activated protein kinase (AMPK). Rat epitrochlearis muscle was isolated and incubated either with or without HS (42°C) for 10 and 30 min. HS for 30 min led to an increase in the level of Hspa1a and Hspa1b mRNA but did not change the amount of HSP72 protein. However, HS for both 10 and 30 min led to a significant increase in the rate of 3-O-methyl-d-glucose (3MG) transport, and the stimulatory effect of 3MG transport was completely blocked by cytochalasin B. HS-stimulated 3MG transport was also inhibited by dorsomorphin but not by wortmannin. HS led to a decrease in the concentration of ATP, phosphocreatine, and glycogen, to an increase in the level of phosphorylation of AMPKα Thr(172), and to an increase in the activity of both AMPKα1 and AMPKα2. HS did not affect the phosphorylation status of insulin receptor signaling or Ca(2+)/calmodulin-dependent protein kinase II. These results suggest that HS acts as a rapid stimulator of insulin-independent glucose transport, at least in part by stimulating AMPK via decreased energy status. Although further research is warranted, heat treatment of skeletal muscle might be a promising method to promote glucose metabolism acutely.
Collapse
Affiliation(s)
- Ayumi Goto
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Ichika Sakon
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Rieko Oshima
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kanata Ito
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Yasuhiro Serizawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Keiichi Sekine
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
van Dam AD, Nahon KJ, Kooijman S, van den Berg SM, Kanhai AA, Kikuchi T, Heemskerk MM, van Harmelen V, Lombès M, van den Hoek AM, de Winther MPJ, Lutgens E, Guigas B, Rensen PCN, Boon MR. Salsalate activates brown adipose tissue in mice. Diabetes 2015; 64:1544-54. [PMID: 25475439 DOI: 10.2337/db14-1125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022]
Abstract
Salsalate improves glucose intolerance and dyslipidemia in type 2 diabetes patients, but the mechanism is still unknown. The aim of the current study was to unravel the molecular mechanisms involved in these beneficial metabolic effects of salsalate by treating mice with salsalate during and after development of high-fat diet-induced obesity. We found that salsalate attenuated and reversed high-fat diet-induced weight gain, in particular fat mass accumulation, improved glucose tolerance, and lowered plasma triglyceride levels. Mechanistically, salsalate selectively promoted the uptake of fatty acids from glycerol tri[(3)H]oleate-labeled lipoprotein-like emulsion particles by brown adipose tissue (BAT), decreased the intracellular lipid content in BAT, and increased rectal temperature, all pointing to more active BAT. The treatment of differentiated T37i brown adipocytes with salsalate increased uncoupled respiration. Moreover, salsalate upregulated Ucp1 expression and enhanced glycerol release, a dual effect that was abolished by the inhibition of cAMP-dependent protein kinase (PKA). In conclusion, salsalate activates BAT, presumably by directly activating brown adipocytes via the PKA pathway, suggesting a novel mechanism that may explain its beneficial metabolic effects in type 2 diabetes patients.
Collapse
Affiliation(s)
- Andrea D van Dam
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - Kimberly J Nahon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - Susan M van den Berg
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Anish A Kanhai
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - Takuya Kikuchi
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - Mattijs M Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Vanessa van Harmelen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marc Lombès
- Institut National de la Santé et de la Recherche Médicale, Unité 693, Le Kremlin-Bicêtre, France
| | - Anita M van den Hoek
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research, Leiden, the Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands Institute for Cardiovascular Prevention, Ludwig Maximilian's University Munich, Munich, Germany
| | - Bruno Guigas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, the Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| |
Collapse
|