1
|
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16:477. [PMID: 33292200 PMCID: PMC7722595 DOI: 10.1186/s12917-020-02696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.
Collapse
Affiliation(s)
- Rachel A Scarfone
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Samantha M Pena
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
2
|
Li Y, Wu S, Li X, Guo S, Cai Z, Yin Z, Zhang Y, Liu Z. Wnt signaling associated small molecules improve the viability of pPSCs in a PI3K/Akt pathway dependent way. J Cell Physiol 2020; 235:5811-5822. [DOI: 10.1002/jcp.29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Shuang Wu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Xuechun Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Shimeng Guo
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhuang Cai
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhi Yin
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Yu Zhang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhonghua Liu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| |
Collapse
|
3
|
Qiao S, Deng Y, Li S, Yang X, Shi D, Li X. Partially Reprogrammed Induced Pluripotent Stem Cells Using MicroRNA Cluster miR-302s in Guangxi Bama Minipig Fibroblasts. Cell Reprogram 2019; 21:229-237. [PMID: 31479283 DOI: 10.1089/cell.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pig-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. The miR-302s cluster alone has been shown to reprogram mouse and human somatic cells into induced pluripotent stem cells (iPSCs) without exogenous transcription factors. However, miR-302s alone have not been reported to reprogram cells in large livestock. In this study, we induced pig somatic cells into partially reprogrammed piPSCs using overexpression of the miR-302s cluster (miR-302s-piPSC) and investigated the early reprogramming events during the miRNA induction process. The results showed that miR-302s-piPSCs exhibited some characteristics of pluripotent stem cells including expression of pluripotency markers-particularly, efficient activation of endogenous OCT4-and differentiation to the three germ layers in vitro. During the early reprogramming process, somatic cells first underwent epithelial-mesenchymal transition and then mesenchymal-epithelial transition to eventually form miR-302s-piPSCs. These data show, for the first time, that single factor miR-302s successfully induced pig somatic cells into miR-302s-piPSCs. This study provides a new tool and research direction for the induction of pluripotent stem cells in a large livestock.
Collapse
Affiliation(s)
- Shuye Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
4
|
The special stemness functions of Tbx3 in stem cells and cancer development. Semin Cancer Biol 2018; 57:105-110. [PMID: 30268432 DOI: 10.1016/j.semcancer.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
The T-box factors belong to an ancient protein family, which comprises a cluster of evolutionarily-conserved transcription factors that regulate gene expression and that are crucial to embryonic development. T-box transcription factor 3 (Tbx3) is a member of this family, is expressed in some tissues, and is a key regulator in many critical organs, including the heart, mammary gland, and limbs. Overexpression of Tbx3 is associated with a number of cancers, including head and neck squamous cell carcinoma, gastric, breast, ovary, cervical, pancreatic, bladder and liver cancers, as well as melanoma. Tbx3 promotes tumor development by modulating cell proliferation, tumor formation, metastasis, cell survival and drug resistance. Moreover, there is strong evidence that Tbx3 regulates stem cell maintenance by controlling stem cell self-renewal and differentiation. Verification of the upstream regulatory factors and potential molecular mechanism of Tbx3, being able to explain the function of Tbx3 in carcinogenic effects and stem cell maintenance, will make a valuable contribution to stem cell and cancer research. This review provides an insight into the current research on Tbx3 and explores the significance of Tbx3 in stem cells and tumorigenesis.
Collapse
|
5
|
Zhu X, Li L, Gao B, Zhang D, Ren Y, Zheng B, Li M, Shi D, Huang B. Early development of porcine parthenogenetic embryos and reduced expression of primed pluripotent marker genes under the effect of lysophosphatidic acid. Reprod Domest Anim 2018; 53:1191-1199. [PMID: 29974990 DOI: 10.1111/rda.13226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022]
Abstract
To further promote the early development of porcine embryos and capture "naïve" pluripotent state within blastocyst, the experiment explored the effects of lysophosphatidic acid (LPA) on the early development of porcine parthenogenetic embryos and the expression of pluripotency relevant genes. The results showed that the addition of 50 μM LPA significantly improved parthenogenetic embryo cleavage rate (82.7% vs. 74.7%, p < 0.05), blastocyst rate (24.5% vs. 11.3%, p < 0.05) and blastocyst cell count (56 ± 7.9 vs. 42 ± 1.0, p < 0.05) than that of the control group. In addition, immunostaining experiment determined that the fluorescence intensity of OCT4 was also significantly higher than that of the control group. The quantitative real-time polymerase chain reaction (qRT-PCR) test revealed that addition of 50 μM LPA could significantly enhance the expression level of pluripotent gene OCT4 and trophoblast marker genes CDX2, however, decrease the expression of primitive hypoblast marker gene GATA4. The results also indicated that LPA might decrease the expression of GATA4 through the ROCK signalling pathway. For further investigating the effect of the addition of LPA on the expression of "primed" and "naïve" genes, we also detected the expression of those pluripotency-related genes by qRT-PCR. The results showed addition of LPA had no significant effect on the expression of "naïve" pluripotent genes, but it was able to significantly decrease the expression of "primed" pluripotent genes, NODAL and Activin-A; furthermore, it also could significantly improve the expression of OCT4 and c-Myc which act as two important ES cell renewal factors. Above all, the addition of LPA can facilitate the early development of porcine parthenogenetic embryos, which may be able to benefit for capturing "naïve" pluripotency in vitro through inhibiting "primed" pluripotency.
Collapse
Affiliation(s)
- Xiusheng Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,Agricultural Genomics Institute at ShenZhen Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lanyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Bangjun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dandan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yanyan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Beibei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Apoptosis in Porcine Pluripotent Cells: From ICM to iPSCs. Int J Mol Sci 2016; 17:ijms17091533. [PMID: 27626414 PMCID: PMC5037808 DOI: 10.3390/ijms17091533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 01/28/2023] Open
Abstract
Pigs have great potential to provide preclinical models for human disease in translational research because of their similarities with humans. In this regard, porcine pluripotent cells, which are able to differentiate into cells of all three primary germ layers, might be a suitable animal model for further development of regenerative medicine. Here, we describe the current state of knowledge on apoptosis in pluripotent cells including inner cell mass (ICM), epiblast, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Information is focused on the apoptotic phenomenon in pluripotency, maintenance, and differentiation of pluripotent stem cells and reprogramming of somatic cells in pigs. Additionally, this review examines the multiple roles of apoptosis and summarizes recent progress in porcine pluripotent cells.
Collapse
|
7
|
Vedunova MV, Mishchenko TA, Mitroshina EV, Ponomareva NV, Yudintsev AV, Generalova AN, Deyev SM, Mukhina IV, Semyanov AV, Zvyagin AV. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures. RSC Adv 2016. [DOI: 10.1039/c6ra01272h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The research demonstrated that upconversion nanoparticles (UCNPs) are toxic to nervous cells. The cytotoxic severity depends on surface modification of UCNPs.
Collapse
|