1
|
Bahout M, Severa G, Kamoun E, Bouhour F, Pegat A, Toutain A, Lagrange E, Duval F, Tard C, De la Cruz E, Féasson L, Jacquin-Piques A, Richard P, Métay C, Cavalli M, Romero NB, Evangelista T, Sole G, Carlier RY, Laforêt P, Acket B, Behin A, Fernández-Eulate G, Léonard-Louis S, Quijano-Roy S, Pereon Y, Salort-Campana E, Nadaj-Pakleza A, Masingue M, Malfatti E, Stojkovic T, Villar-Quiles RN. MYH7-related myopathies: clinical, myopathological and genotypic spectrum in a multicentre French cohort. J Neurol Neurosurg Psychiatry 2025; 96:453-461. [PMID: 39448255 PMCID: PMC12015026 DOI: 10.1136/jnnp-2024-334263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Myosin heavy chain 7 (MYH7)-related myopathies (MYH7-RMs) are a group of muscle disorders linked to pathogenic variants in the MYH7 gene, encoding the slow/beta-cardiac myosin heavy chain, which is highly expressed in skeletal muscle and heart. The phenotype is heterogeneous including distal, predominantly axial or scapuloperoneal myopathies with variable cardiac involvement. METHODS We retrospectively analysed the clinical, muscle MRI, genetic and myopathological features of 57 MYH7 patients. Patients received a thorough neurological (n=57, 100%), cardiac (n=51, 89%) and respiratory (n=45, 79%) assessment. Muscle imaging findings and muscle biopsies were reappraised in 19 (33%) and 27 (47%) patients, respectively. RESULTS We identified three phenotypes with varying degrees of overlap: distal myopathy (70%), scapuloperoneal (23%) and axial with peculiar cervical spine rigidity called the 'sphinx' phenotype (7%). 14% of patients had either dilated cardiomyopathy, hypertrophic cardiomyopathy or left ventricular non-compaction cardiomyopathy. 31% of patients had prominent respiratory involvement, including all patients with the 'sphinx' phenotype. Muscle MRI showed involvement of tibialis anterior, followed by quadriceps, and erector spinae in patients with axial phenotype. Cores represented the most common myopathological lesion. We report 26 pathogenic variants of MYH7 gene, 9 of which are novel. CONCLUSIONS MYH7-RMs have a large phenotypic spectrum, including distal, scapuloperoneal or axial weakness, and variable cardiac and respiratory involvement. Tibialis anterior is constantly and precociously affected both clinically and on muscle imaging. Cores represent the most common myopathological lesion. Our detailed description of MYH7-RMs should improve their recognition and management.
Collapse
Affiliation(s)
- Marie Bahout
- Assistance Publique Hôpitaux de Paris, Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gianmarco Severa
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, Créteil, France
- APHP, Neuromsucular Reference Center, Hôpitaux Universitaires Henri Mondor, Creteil, France
| | - Emna Kamoun
- Service de neurologie, Hôpital Paris-Saclay, Orsay, France
| | - Françoise Bouhour
- Service ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils, Lyon, France
| | - Antoine Pegat
- Service ENMG et de pathologies neuromusculaires, centre de référence des maladies neuromusculaires PACA-Réunion-Rhône Alpes, Hôpital Neurologique P. Wertheimer, Hospices Civils, Lyon, France
| | - Annick Toutain
- CHRU Tours Pôle de Gynécologie Obstétrique Médecine fœtale et Reproduction, Tours, France
| | - Emmeline Lagrange
- Département de Neurologie, Centre de Référence des Maladies Neuromusculaires, CHU de Grenoble, Grenoble, France
| | - Fanny Duval
- Service de Neurologie, CHU Bordeaux, Pessac, France
| | - Celine Tard
- U1172, service de neurologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, CHU de Lille, Lille, France
- Filière nationale, FILNEMUS, France
| | - Elisa De la Cruz
- Filière nationale, FILNEMUS, France
- Department of Neurology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
| | - Léonard Féasson
- Filière nationale, FILNEMUS, France
- UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Unit of Myology, Neuromuscular Reference Center Euro-NmD, University Hospital, Saint-Etienne, France
| | - Agnès Jacquin-Piques
- Service de Neurophysiologie adulte, University Hospital Centre Dijon, Dijon, France
| | - Pascale Richard
- Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire, Centre de Génétique Moléculaire et Chromosomique, Hôpital Pitié-Salpêtrière, INSERM UMRS1166, Sorbonne Université, Paris, France
| | - Corinne Métay
- Filière nationale, FILNEMUS, France
- AP-HP, Pitie-Salpetriere hospital, Molecular and Chromosomic Genetics Center, Cardiogenetic and myogenetic Functional Unit, and INSERM UMRS 974, Sorbonne University, Institute of Myology, Paris, France
| | - Michele Cavalli
- Filière nationale, FILNEMUS, France
- Peripheral Nervous System and Muscle Department, CHU Nice, Hôpital Pasteur 2, Nice, France
| | - Norma Beatriz Romero
- Unité de morphologie Neuromusculaire, Institut de Myologie, GHU La Pitié-Salpêtrière; Université Pierre et Marie Curie-Paris6; INSERM UMR974, Paris, France
| | - Teresinha Evangelista
- Filière nationale, FILNEMUS, France
- Institut de Myologie, Paris, France
- European Reference Network for Rare Neuromuscular Diseases, (EURO-NMD), France
| | - Guilhem Sole
- Centre de référence des maladies neuromusculaires, Service de neurologie et des maladies neuromusculaires, CHU de Bordeaux (Hôpital Pellegrin), FILNEMUS, EURO-NMD, Bordeaux, France
| | - Robert Yves Carlier
- AP-HP, GHU Paris Saclay, Hôpital Raymond Poincaré, DMU Smart Imaging, UMR1179 INSERM, Garches, France
| | - Pascal Laforêt
- Filière nationale, FILNEMUS, France
- Neurology Department, Raymond Poincaré University Hospital, Assistance Publique des Hopitaux de Paris, Garches, France. Nord-Est-Ile-de-France Neuromuscular Reference Center, Fédération Hospitalo Universitaire PHENIX, Garches, France, INSERM U 1179, Paris-Saclay University, Versailles, France
| | - Blandine Acket
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Anthony Behin
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Gorka Fernández-Eulate
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Sarah Léonard-Louis
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Susana Quijano-Roy
- Filière nationale, FILNEMUS, France
- European Reference Network for Rare Neuromuscular Diseases, (EURO-NMD), France
- APHP, service de Neurologie Pédiatrique et Réanimation, Centre de Référence Neuromusculaire Nord/Est/Ile-de-France (FILNEMUS), Hôpital Raymond Poincaré (UVSQ). GH Université Paris-Saclay, Garches, France
| | - Yann Pereon
- Filière nationale, FILNEMUS, France
- CHU Nantes, Centre de Référence des Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Hôtel-Dieu, Nantes, France
| | - Emmanuelle Salort-Campana
- Filière nationale, FILNEMUS, France
- Centre de référence neuromusculaire PACA réunion Rhône-Alpes, service du Pr Attarian, AP HM, Marseille, France
| | - Aleksandra Nadaj-Pakleza
- Filière nationale, FILNEMUS, France
- Centre de Reference des Maladies Neuromusculaires Nord-Est-Ile de France, Department of Neurology, University Hospital Centre, Strasbourg, France
| | - Marion Masingue
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, INSERM U955, Créteil, France
- APHP, Neuromsucular Reference Center, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Filière nationale, FILNEMUS, France
- European Reference Network for Rare Neuromuscular Diseases, (EURO-NMD), France
| | - Tanya Stojkovic
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
- Sorbonne University, Myology research center, UMRS974, Paris, France
| | - Rocío Nur Villar-Quiles
- Filière nationale, FILNEMUS, France
- APHP, service de neuromyologie, centre de référence de pathologie neuromusculaire Nord/Est/Ile-de-France, GH Pitié-Salpêtrière, Paris, France
- Sorbonne University, Myology research center, UMRS974, Paris, France
| |
Collapse
|
2
|
Gao Y, Peng L, Zhao C. MYH7 in cardiomyopathy and skeletal muscle myopathy. Mol Cell Biochem 2024; 479:393-417. [PMID: 37079208 DOI: 10.1007/s11010-023-04735-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
Myosin heavy chain gene 7 (MYH7), a sarcomeric gene encoding the myosin heavy chain (myosin-7), has attracted considerable interest as a result of its fundamental functions in cardiac and skeletal muscle contraction and numerous nucleotide variations of MYH7 are closely related to cardiomyopathy and skeletal muscle myopathy. These disorders display significantly inter- and intra-familial variability, sometimes developing complex phenotypes, including both cardiomyopathy and skeletal myopathy. Here, we review the current understanding on MYH7 with the aim to better clarify how mutations in MYH7 affect the structure and physiologic function of sarcomere, thus resulting in cardiomyopathy and skeletal muscle myopathy. Importantly, the latest advances on diagnosis, research models in vivo and in vitro and therapy for precise clinical application have made great progress and have epoch-making significance. All the great advance is discussed here.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lu Peng
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Naderi N, Mohsen-Pour N, Nilipour Y, Pourirahim M, Maleki M, Kalayinia S. A novel heterozygous missense MYH7 mutation potentially causes an autosomal dominant form of myosin storage myopathy with dilated cardiomyopathy. BMC Cardiovasc Disord 2023; 23:487. [PMID: 37794383 PMCID: PMC10552240 DOI: 10.1186/s12872-023-03538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The MYH7 gene, which encodes the slow/ß-cardiac myosin heavy chain, is mutated in myosin storage myopathy (MSM). The clinical spectrum of MSM is quite heterogeneous in that it ranges from cardiomyopathies to skeletal myopathies or a combination of both, depending on the affected region. In this study, we performed clinical and molecular examinations of the proband of an Iranian family with MSM in an autosomal dominant condition exhibiting proximal muscle weakness and dilated cardiomyopathy. METHODS Following thorough clinical and paraclinical examinations, whole-exome sequencing `was performed on the proband (II-5). Pathogenicity prediction of the candidate variant was performed through in-silico analysis. Co-segregation analysis of the WES data among the family members was carried out by PCR-based Sanger sequencing. RESULTS A novel heterozygous missense variant, MYH7 (NM_000257): c.C1888A: p.Pro630Thr, was found in the DNA of the proband and his children and confirmed by Sanger sequencing. The in-silico analysis revealed that p.Pro630Thr substitution was deleterious. The novel sequence variant fell within a highly conserved region of the head domain. Our findings expand the spectrum of MYH7 mutations. CONCLUSIONS This finding could improve genetic counseling and prenatal diagnosis in families with clinical manifestations associated with MYH7-related myopathy.
Collapse
Affiliation(s)
- Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yalda Nilipour
- Pediatric pathology research center, Research institute for children's health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pourirahim
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Weterman MAJ, Bronk M, Jongejan A, Hoogendijk JE, Krudde J, Karjosukarso D, Goebel HH, Aronica E, Jöbsis GJ, van Ruissen F, van Spaendonck-Zwarts KY, de Visser M, Baas F. Pathogenic variants in three families with distal muscle involvement. Neuromuscul Disord 2023; 33:58-64. [PMID: 36539320 DOI: 10.1016/j.nmd.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Three families suspected of distal hereditary motor neuropathy underwent genetic screening with the aim to identify the molecular defect underlying the disease. The description of the identification reflects the shift in molecular diagnostics that was made during the last decades. Our candidate gene approach yielded a known pathogenic variant in BSCL2 (p.Asn88Ser) in one family, and via a CMT-capture, in HSPB1 (p.Arg127Trp), in addition to five other variations in Charcot-Marie-Tooth-related genes in the proband of the second family. In the third family, using whole exome sequencing, followed by linkage-by-location, a three base pair deletion in exon 33 of MYH7 (p.Glu1508del) was found, a reported pathogenic allele albeit for a myopathy. After identification of the causative molecular defect, cardiac examination was performed for patients of the third family and this demonstrated abnormalities in three out of five affected family members. Heterogeneity and expansion of clinical phenotypes beyond known characteristics requires a wider set of genes to be screened. Whole exome/genome analysis with limited prior clinical information may therefore be used to precede a detailed clinical evaluation in cases of large families, preventing screening of a too narrow set of genes, and enabling the identification of novel disease-associated genes. In our cases, the variants had been reported, and co-segregation analysis confirmed the molecular diagnosis.
Collapse
Affiliation(s)
- Marian A J Weterman
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands.
| | - Marieke Bronk
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Bio-informatics, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Jessica E Hoogendijk
- Department of Neurology, UMC Brain Center, University Medical Center, Utrecht, the Netherlands
| | - Judith Krudde
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Dyah Karjosukarso
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hans H Goebel
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Pathology, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands
| | - G Joost Jöbsis
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Fred van Ruissen
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Y van Spaendonck-Zwarts
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Marianne de Visser
- Department of Neurology, University Medical Center Amsterdam, location Academic Medical Center, Amsterdam, the Netherlands
| | - Frank Baas
- Department of Genome Analysis/Clinical Genetics, Amsterdam University Medical Center, Location Academic Medical Center, Amsterdam, the Netherlands; Dept Clinical Genetics, LUMC, Leiden, the Netherlands
| |
Collapse
|
5
|
Rubino A, Bruno G, Mazio F, de Leva MF, Ruggiero L, Santorelli FM, Varone A. Spinal Nerve Roots Abnormalities on MRI in a Child with SURF1 Mitochondrial Disease. Neuropediatrics 2022; 53:208-212. [PMID: 34852375 DOI: 10.1055/s-0041-1739135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Variants in SURF1, encoding an assembly factor of mitochondrial respiratory chain complex IV, cause Leigh syndrome (LS) and Charcot-Marie-Tooth type 4K in children and young adolescents. Magnetic resonance imaging (MRI) appearance of enlarged nerve roots with postcontrastographic enhancement is a distinctive feature of hypertrophic neuropathy caused by onion-bulb formation and it has rarely been described in mitochondrial diseases (MDs). Spinal nerve roots abnormalities on MRI are novel findings in LS associated with variants in SURF1. Here we report detailed neuroradiological and neurophysiologic findings in a child with LS and demyelinating neuropathy SURF1-related. Our case underlines the potential contributive role of spinal neuroimaging together with neurophysiological examination to identify the full spectrum of patterns in MDs. It remains to elucidate if these observations remain peculiar of SURF1 variants or potentially detectable in other MDs with peripheral nervous system involvement.
Collapse
Affiliation(s)
- Alfonso Rubino
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy
| | - Giorgia Bruno
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy.,Department of Advanced Medical and Surgical Sciences, Second Division of Neurology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Federica Mazio
- Division of Pediatric Neuroradiology, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Maria Fulvia de Leva
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
| | | | - Antonio Varone
- Division of Pediatric Neurology, Department of Neurosciences, "Santobono-Pausilipon" Children's Hospital, Naples, Italy
| |
Collapse
|
6
|
Lin Y, Huang J, Zhu Z, Zhang Z, Xian J, Yang Z, Qin T, Chen L, Huang J, Huang Y, Wu Q, Hu Z, Lin X, Xu G. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis 2021; 16:496. [PMID: 34819141 PMCID: PMC8611834 DOI: 10.1186/s13023-021-02112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background The left ventricular noncompaction cardiomyopathy (LVNC) is a rare subtype of cardiomyopathy associated with a high risk of heart failure (HF), thromboembolism, arrhythmia, and sudden cardiac death. Methods The proband with overlap phenotypes of LVNC and hypertrophic cardiomyopathy (HCM) complicates atrial fibrillation (AF), ventricular tachycardia (VT), and HF due to the diffuse myocardial lesion, which were diagnosed by electrocardiogram, echocardiogram and cardiac magnetic resonance imaging. Peripheral blood was collected from the proband and his relatives. DNA was extracted from the peripheral blood of proband for high-throughput target capture sequencing. The Sanger sequence verified the variants. The protein was extracted from the skin of the proband and healthy volunteer. The expression difference of desmocollin2 was detected by Western blot. Results The novel heterozygous truncated mutation (p.K47Rfs*2) of the DSC2 gene encoding an important component of desmosomes was detected by targeted capture sequencing. The western blots showed that the expressing level of functional desmocollin2 protein (~ 94kd) was lower in the proband than that in the healthy volunteer, indicating that DSC2 p.K47Rfs*2 obviously reduced the functional desmocollin2 protein expression in the proband. Conclusion The heterozygous DSC2 p.K47Rfs*2 remarkably and abnormally reduced the functional desmocollin2 expression, which may potentially induce the overlap phenotypes of LVNC and HCM, complicating AF, VT, and HF.
Collapse
Affiliation(s)
- Yubi Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jiana Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Reproductive Center, The Six Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhiling Zhu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zuoquan Zhang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianzhong Xian
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhe Yang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Tingfeng Qin
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Linxi Chen
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Jingmin Huang
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Yin Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Qiaoyun Wu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhenyu Hu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Xiufang Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Geyang Xu
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
7
|
POPDC2 a novel susceptibility gene for conduction disorders. J Mol Cell Cardiol 2020; 145:74-83. [PMID: 32535041 DOI: 10.1016/j.yjmcc.2020.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/25/2023]
Abstract
Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2W188⁎), deleting parts of its cAMP binding-domain. Popeye-domain containing (POPDC) proteins are predominantly expressed in the skeletal muscle and the heart, with particularly high expression of POPDC2 in the sinoatrial node of the mouse. We now show by quantitative PCR experiments that in the human heart the POPDC-modulated two-pore domain potassium (K2P) channel TREK-1 is preferentially expressed in the atrioventricular node. Co-expression studies in Xenopus oocytes revealed that POPDC2W188⁎ causes a loss-of-function with impaired TREK-1 modulation. Consistent with the high expression level of POPDC2 in the murine sinoatrial node, POPDC2W188⁎ knock-in mice displayed stress-induced sinus bradycardia and pauses, a phenotype that was previously also reported for POPDC2 and TREK-1 knock-out mice. We propose that the POPDC2W188⁎ loss-of-function mutation contributes to AVB pathogenesis by an aberrant modulation of TREK-1, highlighting that POPDC2 represents a novel arrhythmia gene for cardiac conduction disorders.
Collapse
|
8
|
Li S, Wen H, Du S. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J 2020; 34:1378-1397. [PMID: 31914689 PMCID: PMC6956737 DOI: 10.1096/fj.201900935rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/11/2022]
Abstract
Zebrafish skeletal muscles are broadly divided into slow-twitch and fast-twitch muscle fibers. The slow fibers, which express a slow fiber-specific myosin heavy chain 1 (Smyhc1), are the first group of muscle fibers formed during myogenesis. To uncover Smyhc1 function in muscle growth, we generated three mutant alleles with reading frame shift mutations in the zebrafish smyhc1 gene using CRISPR. The mutants showed shortened sarcomeres with no thick filaments and M-lines in slow fibers of the mutant embryos. However, the formation of slow muscle precursors and expression of other slow muscle genes were not affected and fast muscles appeared normal. The smyhc1 mutant embryos and larvae showed reduced locomotion and food intake. The mutant larvae exhibited increased lethality of incomplete penetrance. Approximately 2/5 of the homozygous mutants were viable and grew into reproductive adults. These adult mutants displayed a typical pattern of slow and fast muscle fiber distribution, and regained normal slow muscle formation. Together, our studies indicate that Smyhc1 is essential for myogenesis in embryonic slow muscles, and loss of Smyhc1 results in defective sarcomere assembly, reduces larval motility and fish survival, but has no visible impact on muscle growth in juvenile and adult zebrafish that escape the larval lethality.
Collapse
Affiliation(s)
- Siping Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
9
|
Finsterer J, Stöllberger C. Reasons for missing noncompaction in myopathies and vice versa. Cardiovasc Pathol 2018; 35:20-22. [PMID: 29730526 DOI: 10.1016/j.carpath.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Claudia Stöllberger
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria
| |
Collapse
|
10
|
Cassandrini D, Trovato R, Rubegni A, Lenzi S, Fiorillo C, Baldacci J, Minetti C, Astrea G, Bruno C, Santorelli FM. Congenital myopathies: clinical phenotypes and new diagnostic tools. Ital J Pediatr 2017; 43:101. [PMID: 29141652 PMCID: PMC5688763 DOI: 10.1186/s13052-017-0419-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022] Open
Abstract
Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis.
Collapse
Affiliation(s)
| | - Rosanna Trovato
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Anna Rubegni
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Sara Lenzi
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Chiara Fiorillo
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Jacopo Baldacci
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Carlo Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G. Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - Guja Astrea
- Neurology, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto G. Gaslini, Genoa, Italy
| | | | | |
Collapse
|
11
|
Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, Pedemonte M, Trovato R, Ruggiero L, Vercelli L, D'Amico A, Tasca G, Pane M, Fanin M, Bello L, Broda P, Musumeci O, Rodolico C, Messina S, Vita GL, Sframeli M, Gibertini S, Morandi L, Mora M, Maggi L, Petrucci A, Massa R, Grandis M, Toscano A, Pegoraro E, Mercuri E, Bertini E, Mongini T, Santoro L, Nigro V, Minetti C, Santorelli FM, Bruno C. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis 2016; 11:91. [PMID: 27387980 PMCID: PMC4936326 DOI: 10.1186/s13023-016-0476-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/22/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Myosin heavy chain 7 (MYH7)-related myopathies are emerging as an important group of muscle diseases of childhood and adulthood, with variable clinical and histopathological expression depending on the type and location of the mutation. Mutations in the head and neck domains are a well-established cause of hypertrophic cardiomyopathy whereas mutation in the distal regions have been associated with a range of skeletal myopathies with or without cardiac involvement, including Laing distal myopathy and Myosin storage myopathy. Recently the spectrum of clinical phenotypes associated with mutations in MYH7 has increased, blurring this scheme and adding further phenotypes to the list. A broader disease spectrum could lead to misdiagnosis of different congenital myopathies, neurogenic atrophy and other neuromuscular conditions. RESULTS As a result of a multicenter Italian study we collected clinical, histopathological and imaging data from a population of 21 cases from 15 families, carrying reported or novel mutations in MYH7. Patients displayed a variable phenotype including atypical pictures, as dropped head and bent spine, which cannot be classified in previously described groups. Half of the patients showed congenital or early infantile weakness with predominant distal weakness. Conversely, patients with later onset present prevalent proximal weakness. Seven patients were also affected by cardiomyopathy mostly in the form of non-compacted left ventricle. Muscle biopsy was consistent with minicores myopathy in numerous cases. Muscle MRI was meaningful in delineating a shared pattern of selective involvement of tibialis anterior muscles, with relative sparing of quadriceps. CONCLUSION This work adds to the genotype-phenotype correlation of MYH7-relatedmyopathies confirming the complexity of the disorder.
Collapse
Affiliation(s)
- C Fiorillo
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy. .,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy.
| | - G Astrea
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - M Savarese
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - D Cassandrini
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - G Brisca
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy.,Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genoa, Italy
| | - F Trucco
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - M Pedemonte
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - R Trovato
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - L Ruggiero
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, Naples, Italy
| | - L Vercelli
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - A D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - G Tasca
- Don Carlo Gnocchi ONLUS Foundation, Rome, Italy
| | - M Pane
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - M Fanin
- Department of Neurosciences, University of Padua, Padua, Italy
| | - L Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - P Broda
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy
| | - O Musumeci
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - C Rodolico
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - S Messina
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - G L Vita
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - M Sframeli
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - S Gibertini
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - L Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - M Mora
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - L Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Foundation C Besta Neurological Institute, Milan, Italy
| | - A Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo-Forlanini Hospital, Rome, Italy
| | - R Massa
- Department of Systems Medicine (Neurology), University of Tor Vergata, Rome, Italy
| | - M Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy
| | - A Toscano
- Department of Clinical and Experimental Medicine and Nemo Sud Clinical Centre, University of Messina, Messina, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - E Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - E Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - T Mongini
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - L Santoro
- Department of Neurosciences and Reproductive and Odontostomatologic Sciences, University Federico II, Naples, Italy
| | - V Nigro
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - C Minetti
- Unit of Pediatric Neurology and Muscular Disorders, Istituto G.Gaslini, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternad and Child Health, University of Genova, University of Genoa, Genoa, Italy
| | - F M Santorelli
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, Via dei Giacinti 2, 56128, Calambrone, Pisa, Italy
| | - C Bruno
- Department of Neuroscience, Center of Myology and Neurodegenerative Disorders, Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
12
|
Brand P, Dyck PJB, Liu J, Berini S, Selcen D, Milone M. Distal myopathy with coexisting heterozygous TIA1 and MYH7 Variants. Neuromuscul Disord 2016; 26:511-5. [PMID: 27282841 DOI: 10.1016/j.nmd.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/28/2016] [Accepted: 05/19/2016] [Indexed: 01/20/2023]
Abstract
TIA1 mutations cause Welander distal myopathy. MYH7 mutations result in various clinical phenotypes, including Laing distal myopathy and cardiomyopathy. We describe a family with coexisting TIA1 and MYH7 variants. The proband is a 67-year-old woman with easy tripping since childhood and progressive asymmetric distal limb weakness, but no cardiac involvement. Muscle biopsy showed rare rimmed vacuoles, minicore-like structures and congophilic inclusions. Her 66-year-old sister has a mild distal myopathy, supraventricular tachycardia and hypertrophic cardiomyopathy. Both sisters carry the only known pathogenic TIA1 mutation and a heterozygous MYH7 variant (c.5459G > A; p.Arg1820Gln). Another sibling with isolated distal myopathy carries only the TIA1 mutation. MYH7 p.Arg1820Gln involves a highly conserved residue and is predicted to be deleterious. Furthermore, the proband's childhood-onset distal leg weakness and sister's cardiomyopathy suggest that MYH7 p.Arg1820Gln likely affects function, favoring a digenic etiology of the myopathy.
Collapse
Affiliation(s)
- Patricio Brand
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - P James B Dyck
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Jie Liu
- PreventionGenetics, 3800 S. Business Park Ave, Marshfield, Wisconsin 54449, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sarah Berini
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.
| |
Collapse
|
13
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|