1
|
Procházková M, Killinger M, Prokeš L, Klepárník K. Miniaturized bioluminescence technology for single-cell quantification of caspase-3/7. J Pharm Biomed Anal 2021; 209:114512. [PMID: 34891005 DOI: 10.1016/j.jpba.2021.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Correct determination of the instantaneous level and changes of relevant proteins inside individual cells is essential for correct interpretation and understanding of physiological, diagnostic, and therapeutic events. Thus, single-cell analyses are important for quantification of natural cellular heterogeneity, which cannot be evaluated from averaged data of a cell population measurements. Here, we developed an original highly sensitive and selective instrumentation and methodology based on homogeneous single-step bioluminescence assay to quantify caspases and evaluate their heterogeneity in individual cells. Individual suspended cells are selected under microscope and reliably transferred into the 7 µl detection vials by a micromanipulator. The sensitivity of the method is given by implementation of photomultiplying tube with a cooled photocathode working in the photon counting mode. By optimization of our device and methodology, the limits of detection and quantitation were decreased down to 2.1 and 7.0 fg of recombinant caspase-3, respectively. These masses are lower than average amounts of caspase-3/7 in individual apoptotic and even non-apoptotic cells. As a proof of concept, the content of caspase-3/7 in single treated and untreated HeLa cells was determined to be 154 and 25 fg, respectively. Based on these results, we aim to use the technology for investigations of non-apoptotic functions of caspases.
Collapse
Affiliation(s)
- Markéta Procházková
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic.
| | - Michael Killinger
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic.
| | - Lubomír Prokeš
- Department of Physics, Chemistry and Vocational Education, Faculty of Education, Masaryk University, Poříčí 7, Brno 603 00, Czech Republic.
| | - Karel Klepárník
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Veveří 97, Brno 602 00, Czech Republic.
| |
Collapse
|
2
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
3
|
Bartok A, Weaver D, Golenár T, Nichtova Z, Katona M, Bánsághi S, Alzayady KJ, Thomas VK, Ando H, Mikoshiba K, Joseph SK, Yule DI, Csordás G, Hajnóczky G. IP 3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun 2019; 10:3726. [PMID: 31427578 PMCID: PMC6700175 DOI: 10.1038/s41467-019-11646-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/12/2019] [Indexed: 12/31/2022] Open
Abstract
Contact sites of endoplasmic reticulum (ER) and mitochondria locally convey calcium signals between the IP3 receptors (IP3R) and the mitochondrial calcium uniporter, and are central to cell survival. It remains unclear whether IP3Rs also have a structural role in contact formation and whether the different IP3R isoforms have redundant functions. Using an IP3R-deficient cell model rescued with each of the three IP3R isoforms and an array of super-resolution and ultrastructural approaches we demonstrate that IP3Rs are required for maintaining ER-mitochondrial contacts. This role is independent of calcium fluxes. We also show that, while each isoform can support contacts, type 2 IP3R is the most effective in delivering calcium to the mitochondria. Thus, these studies reveal a non-canonical, structural role for the IP3Rs and direct attention towards the type 2 IP3R that was previously neglected in the context of ER-mitochondrial calcium signaling.
Collapse
Affiliation(s)
- Adam Bartok
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Departent of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - David Weaver
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tünde Golenár
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Máté Katona
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Száva Bánsághi
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kamil J Alzayady
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - V Kaye Thomas
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - Hideaki Ando
- Lab for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Katsuhiko Mikoshiba
- Lab for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, Japan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Suresh K Joseph
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David I Yule
- Department of Physiology and Pharmacology, University of Rochester, Rochester, NY, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Zlobovskaya OA, Shirmanova MV, Kovaleva TF, Sarkisyan KS, Zagaynova EV, Lukyanov KA. Sensors for Caspase Activities. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Chitooligosaccharide Biguanide Repairs Islet β‐Cell Dysfunction by Activating the IRS‐2/PI3K/Akt Signaling Pathway in Type 2 Diabetic Rats. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Miyamoto A, Mikoshiba K. A novel multi lines analysis tool of Ca 2+ dynamics reveals the nonuniformity of Ca 2+ propagation. Cell Calcium 2019; 78:76-80. [PMID: 30669073 DOI: 10.1016/j.ceca.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
Extracellular stimuli evoke a robust increase in the concentration of intracellular Ca2+ ([Ca2+]c) throughout the cell to trigger various cellular responses, such as gene expression and apoptosis. This robust expansion of [Ca2+]c is called Ca2+ propagation. To date, it is thought that intracellular second messengers, such as inositol 1,4,5-trisphosphate (IP3) and intracellular Ca2+, and clusters of IP3 receptors (IP3Rs) regulate Ca2+ propagation. However, little is known about how the elevation in the [Ca2+]c spreads throughout the cell, especially in non-polar cell, including HeLa cell. In this study, we developed a novel multi lines analysis tool. This tool revealed that the velocity of Ca2+ propagation was inconstant throughout cell and local concentration of intracellular Ca2+ did not contribute to the velocity of Ca2+ propagation. Our results suggest that intracellular Ca2+ propagation is not merely the result of diffusion of intracellular Ca2+, and that, on the contrary, intracellular Ca2+ propagation seems to be regulated by more complicated processes.
Collapse
Affiliation(s)
- Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
7
|
Assessment of cytosolic free calcium changes during ceramide-induced cell death in MDA-MB-231 breast cancer cells expressing the calcium sensor GCaMP6m. Cell Calcium 2018; 72:39-50. [PMID: 29748132 DOI: 10.1016/j.ceca.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Alterations in Ca2+ signaling can regulate key cancer hallmarks such as proliferation, invasiveness and resistance to cell death. Changes in the regulation of intracellular Ca2+ and specific components of Ca2+ influx are a feature of several cancers and/or cancer subtypes, including the basal-like breast cancer subtype, which has a poor prognosis. The development of genetically encoded calcium indicators, such as GCaMP6, represents an opportunity to measure changes in intracellular free Ca2+ during processes relevant to breast cancer progression that occur over long periods (e.g. hours), such as cell death. This study describes the development of a MDA-MB-231 breast cancer cell line stably expressing GCaMP6m. The cell line retained the key features of this aggressive basal-like breast cancer cell line. Using this model, we defined alterations in relative cytosolic free Ca2+ ([Ca2+]CYT) when the cells were treated with C2-ceramide. Cell death was measured simultaneously via assessment of propidium iodide permeability. Treatment with ceramide produced delayed and heterogeneous sustained increases in [Ca2+]CYT. Where cell death occurred, [Ca2+]CYT increases preceded cell death. The sustained increases in [Ca2+]CYT were not related to the rapid morphological changes induced by ceramide. Silencing of the plasma membrane Ca2+ ATPase isoform 1 (PMCA1) was associated with an augmentation in ceramide-induced increases in [Ca2+]CYT and also cell death. This work demonstrates the utility of GCaMP6 Ca2+ indicators for investigating [Ca2+]CYT changes in breast cancer cells during events relevant to tumor progression, which occur over hours rather than minutes.
Collapse
|
8
|
Affiliation(s)
- Lucas Armbrecht
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
9
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
10
|
Zhang Y, Zhang Z, Wang H, Cai N, Zhou S, Zhao Y, Chen X, Zheng S, Si Q, Zhang W. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3β pathway. Mol Med Rep 2016; 14:2778-84. [PMID: 27485139 DOI: 10.3892/mmr.2016.5556] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 05/25/2016] [Indexed: 11/06/2022] Open
|
11
|
Zlobovskaya OA, Sergeeva TF, Shirmanova MV, Dudenkova VV, Sharonov GV, Zagaynova EV, Lukyanov KA. Genetically encoded far-red fluorescent sensors for caspase-3 activity. Biotechniques 2016; 60:62-8. [PMID: 26842350 DOI: 10.2144/000114377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/07/2015] [Indexed: 11/23/2022] Open
Abstract
Caspase-3 is a key effector caspase that is activated in both extrinsic and intrinsic pathways of apoptosis. Available fluorescent sensors for caspase-3 activity operate in relatively short wavelength regions and are nonoptimal for multiparameter microscopy and whole-body imaging. In the present work, we developed new genetically encoded sensors for caspase-3 activity possessing the most red-shifted spectra to date. These consist of Förster resonance energy transfer (FRET) pairs in which a far-red fluorescent protein (mKate2 or eqFP650) is connected to the infrared fluorescent protein iRFP through a linker containing the DEVD caspase-3 cleavage site. During staurosporine-induced apoptosis of mammalian cells (HeLa and CT26), both mKate2-DEVD-iRFP and eqFP650-DEVD-iRFP sensors showed a robust response (1.6-fold increase of the donor fluorescence intensity). However, eqFP650-DEVD-iRFP displayed aggregation in some cells. For stably transfected CT26 mKate2-DEVD-iRFP cells, fluorescence lifetime imaging (FLIM) enabled us to detect caspase-3 activation due to the increase of mKate2 donor fluorescence lifetime from 1.45 to 2.05 ns. We took advantage of the strongly red-shifted spectrum of mKate2-DEVD-iRFP to perform simultaneous imaging of EGFP-Bax translocation during apoptosis. We conclude that mKate2-DEVD-iRFP is well-suited for multiparameter imaging and also potentially beneficial for in vivo imaging in animal tissues.
Collapse
Affiliation(s)
| | | | | | - Varvara V Dudenkova
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia
- Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - George V Sharonov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|