1
|
Zhao J, Yang DH, Qieqieke Y, Han NN, Jieensi H. Regulation of Alternative Splicing by PARP1 in HTR-8/Svneo Cells: Implications for Placental Development and Spontaneous Abortion. Curr Med Sci 2024; 44:1325-1336. [PMID: 39565507 DOI: 10.1007/s11596-024-2943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/21/2023] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Alternative splicing affects gene expression during placental development. The present study aimed to identify poly (ADP-ribose) polymerase 1 (PARP1)-regulated alternative splicing events in HTR-8/Svneo cells. METHODS Decidual tissues were collected from women with induced abortion and spontaneous abortion. PARP1 transcription was quantified by RT-qPCR. Small interfering RNA (siRNA) was used to knock down the PARP1 expression in HTR-8/Svneo cells. The transfection efficiency was verified by RT-qPCR and Western blotting. Total RNA was extracted, and the RNA-sequencing approach was used to identify alternative splicing events and transcriptomes. The PARP1 knockdown-induced differentially expressed genes with changes in alternative splicing events were quantified by RT-qPCR. Functional analysis, which included the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, was performed. RESULTS The PARP1 mRNA expression increased in decidual tissues in the spontaneous abortion group, when compared to the induced abortion group. However, the PARP1 knockdown significantly downregulated 1491 genes and upregulated 881 genes in HTR-8/Svneo cells. Furthermore, 227 genes that underwent alternative splicing were identified, and these were differentially expressed in siPARP1 cells, when compared to siNC cells. CONCLUSION The functional analysis revealed that these alternative splicing genes affected the functional phenotypes of extravillous cytotrophoblasts. Furthermore, the PARP1 knockdown led to alterations in gene expression and specific alternative splicing patterns in extravillous trophoblasts.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China.
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - De-Hua Yang
- Department of Pediatrics, Shenzhen Hengsheng Hospital, Shenzhen, 518102, China
| | - Yeerdeng Qieqieke
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Ning-Ning Han
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Hasitiyaer Jieensi
- Center of Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| |
Collapse
|
2
|
Khan NLA, Muhandiram S, Dissanayake K, Godakumara K, Midekessa G, Andronowska A, Heath PR, Kodithuwakku S, Hart AR, Fazeli A. Effect of 3D and 2D cell culture systems on trophoblast extracellular vesicle physico-chemical characteristics and potency. Front Cell Dev Biol 2024; 12:1382552. [PMID: 38835509 PMCID: PMC11148233 DOI: 10.3389/fcell.2024.1382552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.
Collapse
Affiliation(s)
- Norhayati Liaqat Ali Khan
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA (UiTM), Sg. Buloh, Selangor, Malaysia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paul R Heath
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Amber Rose Hart
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
4
|
Parrilla I, Martinez EA, Gil MA, Cuello C, Roca J, Rodriguez-Martinez H, Martinez CA. Boar seminal plasma: current insights on its potential role for assisted reproductive technologies in swine. Anim Reprod 2020; 17:e20200022. [PMID: 33029213 PMCID: PMC7534575 DOI: 10.1590/1984-3143-ar2020-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seminal plasma (SP) supports not only sperm function but also the ability of spermatozoa to withstand biotechnological procedures as artificial insemination, freezing or sex sorting. Moreover, evidence has been provided that SP contains identifiable molecules which can act as fertility biomarkers, and even improve the output of assisted reproductive technologies by acting as modulators of endometrial and embryonic changes of gene expression, thus affecting embryo development and fertility beyond the sperm horizon. In this overview, we discuss current knowledge of the composition of SP, mainly proteins and cytokines, and their influence on semen basic procedures, such as liquid storage or cryopreservation. The role of SP as modulator of endometrial and embryonic molecular changes that lead to successful pregnancy will also be discussed.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Emilio Arsenio Martinez
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Maria Antonia Gil
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Cristina Cuello
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Jordi Roca
- Departmento de Medicina y Cirugía Animal, Facultad de Veterinaria, Campus de de Excelencia International "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, Campus de Ciencias de la Salud, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences, BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Cristina Alicia Martinez
- Department of Biomedical & Clinical Sciences, BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Seminal Plasma Induces Overexpression of Genes Associated with Embryo Development and Implantation in Day-6 Porcine Blastocysts. Int J Mol Sci 2020; 21:ijms21103662. [PMID: 32455957 PMCID: PMC7279338 DOI: 10.3390/ijms21103662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
The infusion of boar seminal plasma (SP) before artificial insemination (AI) positively alters the expression of endometrial genes and pathways involved in embryo development. This study aimed to determine which transcriptome changes occur in preimplantation embryos in response to SP infusions during estrus. Postweaning estrus sows received 40-mL intrauterine infusions of either SP (N = 6) or BTS extender (control group; N = 6) 30 min before each of two post-cervical AIs. On Day 6, embryos were surgically collected and analyzed for differential gene expression. Microarray analysis of embryos revealed 210 annotated genes, differentially expressed (p-value < 0.05 and fold change </> 2) in SP-blastocysts, compared to controls. Most of these genes were associated with biological, cellular, metabolic and developmental processes. The pathways enriched among the upregulated genes related to signal transduction, cellular processes and the endocrine system. Among altered genes involved in these pathways, the SP-group showed a conspicuous overexpression of ApoA-I, CDK1, MAPK1, SMAD2, PRKAA1 and RICTOR, with reported key roles in embryo development, implantation, or progression of pregnancy. In conclusion, the results demonstrate that SP infusions prior to AI upregulates the expression of embryo development related genes in Day 6 pig embryos.
Collapse
|
6
|
Gou J, Hu T, Li L, Xue L, Zhao X, Yi T, Li Z. Role of epithelial–mesenchymal transition regulated by twist basic helix-loop-helix transcription factor 2 (Twist2) in embryo implantation in mice. Reprod Fertil Dev 2019; 31:932-940. [DOI: 10.1071/rd18314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
In a previous study we found the expression of epithelial–mesenchymal transition (EMT) biomarkers, including E-cadherin and N-cadherin, was significantly altered in uterine endometrium during embryo implantation via regulation by microRNA (miRNA)-429 and protocadherin-8 (Pcdh8). As a natural continuation of the previous study, the aim of the present study was to explore the role of EMT during embryo implantation and the potential activity of twist basic helix-loop-helix transcription factor 2 (Twist2) in regulating embryo implantation. A pregnancy model was established by naturally mating adult female ICR mice with fertile males. A pseudopregnancy model was established by mating fertile female ICR mice with vasectomised males. An invitro model of embryo implantation was established by the coculture of Ishikawa and JAR spheroids. Endometrial tissue during the peri-implantation period was collected, as were Ishikawa cells, JAR cells and cocultured cells. The expression of EMT markers (E-cadherin, N-cadherin, vimentin and cytokeratin) and Twist2 was detected invivo and invitro using the western blot analysis during embryo implantation. The expression of N-cadherin and vimentin (mesenchymal markers) was upregulated in the invitro implantation model, with downregulation of E-cadherin and cytokeratin (epithelial markers) expression. The expression of N-cadherin, vimentin and Twist2 increased significantly at the implantation sites at the time of implantation (Day 5), whereas the expression of E-cadherin and cytokeratin decreased. Location of Twist2 during embryo implantation was detected by immunohistochemistry (IHC), which revealed that it was extensively expressed in endometrial glandular epithelium and luminal epithelium at implantation sites on Day 5. The effect of the expression of Twist2 on embryo implantation was evaluated by suppressing Twist2 using Twist2-short interference (si) RNA in invivo and invitro models. The numbers of implanted embryos and the implantation rate were compared invivo and invitro. Western blot analysis showed that suppression of Twist2 led to upregulation of E-cadherin and cytokeratin, accompanied by downregulation of N-cadherin and vimentin (P<0.05). The number of implanted embryos after Twist2-siRNA interference was lower than in normal pregnancy (mean (±s.d.) 2.4±0.5 vs 6.8±1.3 respectively; P<0.05). These findings suggest the involvement of EMT in embryo implantation. The suppression of Twist2 could suppress embryo implantation by regulating EMT.
Collapse
|
7
|
Gou J, Jia J, Feng J, Zhao X, Yi T, Cui T, Li Z. Stathmin 1 plays a role in endometrial decidualisation by regulating hypoxia inducible factor-1α and vascular endothelial growth factor during embryo implantation. Reprod Fertil Dev 2017; 29:1530-1537. [DOI: 10.1071/rd15539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to explore the potential mechanism underlying stathmin 1 (Stmn1) regulation of embryo implantation, as a continuation of previous proteomic research. Adult healthy female mice were mated naturally with fertile males. Murine uterine tissue was collected during the peri-implantation period. Local expression of Stmn1 during embryo implantation was detected by immunohistochemistry (IHC), which showed that Stmn1 was extensively expressed in endometrial glandular epithelium, vascular endothelium, luminal epithelium and the underlying stromal cells at the implantation site on Day 5. The role of Stmn1 during embryo implantation was evaluated by transient knockdown of Stmn1 in vivo using short interference (si) RNA, and some associated factors including Akt, phosphorylated (p-) Akt, hypoxia-inducible factor (HIF)-1α, prolactin (PRL), insulin-like growth factor binding protein (IGFBP) 1 and vascular endothelial growth factor (VEGF) were examined by western blotting analysis and ELISA. The number of embryos implanted after Stmn1-siRNA infusion into the lumen of one uterine horn was lower than that with normal pregnancies (2.2 ± 1.5 vs 8.6 ± 0.5 respectively; P < 0.05). The expression of VEGF, HIF-1α, p-Akt and the decidualisation biomarkers PRL and IGFBP 1 was upregulated at the implantation site on Day 5, but downregulated after Stmn1-siRNA infusion. These findings suggest that during embryo implantation, knockdown of Stmn1 suppresses decidualisation by inhibiting the expression of p-Akt, HIF-1α and VEGF, thus leading to impaired embryo implantation. These findings provide clues for understanding the complicated process of embryo implantation and the potential role of Stmn1 during embryo implantation.
Collapse
|
8
|
Apolipoprotein A1 and heterogeneous nuclear ribonucleoprotein E1 implicated in the regulation of embryo implantation by inhibiting lipid peroxidation. Reprod Biomed Online 2016; 33:635-645. [DOI: 10.1016/j.rbmo.2016.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022]
|
9
|
Tian FJ, Qin CM, Li XC, Wu F, Liu XR, Xu WM, Lin Y. Decreased stathmin-1 expression inhibits trophoblast proliferation and invasion and is associated with recurrent miscarriage. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2709-21. [PMID: 26272359 DOI: 10.1016/j.ajpath.2015.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/01/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022]
Abstract
Fetal trophoblasts invade endometrium and establish a complex interaction with the maternal microenvironment during early pregnancy. However, the molecular mechanisms regulating trophoblast migration and invasion at the maternal-fetal interface remain poorly understood. Immunohistochemistry and immunoblotting have shown that stathmin-1 (STMN1) was down-regulated significantly in placental villi tissue and trophoblasts from patients with recurrent miscarriage. In vitro, overexpression of STMN1 promoted human trophoblast proliferation, migration, and invasion, whereas knockdown of STMN1 inhibited these processes. In addition, knockdown of STMN1 down-regulated N-cadherin and up-regulated E-cadherin in trophoblasts, whereas E-cadherin was up-regulated and N-cadherin was down-regulated in recurrent miscarriage villi tissue. Knockdown of STMN1 attenuated cytoplasmic-nuclear translocation of β-catenin and in turn down-regulated trophoblast matrix metalloproteases. Furthermore, tumor necrosis factor-α (TNF-α) down-regulated STMN1 expression, and serum TNF-α expression correlated inversely with trophoblast STMN1 levels. Interestingly, M1 macrophage-derived TNF-α reduced trophoblast migration and invasion, and an anti-TNF-α antibody reversed this effect. Collectively, this study indicated that STMN1 may play a key role in regulating trophoblast invasion, and that impaired STMN1 expression may lead to abnormal trophoblast invasion and result in recurrent miscarriage.
Collapse
Affiliation(s)
- Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Mei Qin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Cui Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Rui Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang-Ming Xu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yi Lin
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|