1
|
Zhang X, He H, Yu H, Teng X, Wang Z, Li C, Li J, Yang H, Shen J, Wu T, Zhang F, Zhang Y, Wu Q. Maternal RNA transcription in Dlk1-Dio3 domain is critical for proper development of the mouse placental vasculature. Commun Biol 2024; 7:363. [PMID: 38521877 PMCID: PMC10960817 DOI: 10.1038/s42003-024-06038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
The placenta is a unique organ for ensuring normal embryonic growth in the uterine. Here, we found that maternal RNA transcription in Dlk1-Dio3 imprinted domain is essential for placentation. PolyA signals were inserted into Gtl2 to establish a mouse model to prevent the expression of maternal RNAs in the domain. The maternal allele knock-in (MKI) and homozygous (HOMO) placentas showed an expanded junctional zone, reduced labyrinth and poor vasculature impacting both fetal and maternal blood spaces. The MKI and HOMO models displayed dysregulated gene expression in the Dlk1-Dio3 domain. In situ hybridization detected Dlk1, Gtl2, Rtl1, miR-127 and Rian dysregulated in the labyrinth vasculature. MKI and HOMO induced Dlk1 to lose imprinting, and DNA methylation changes of IG-DMR and Gtl2-DMR, leading to abnormal gene expression, while the above changes didn't occur in paternal allele knock-in placentas. These findings demonstrate that maternal RNAs in the Dlk1-Dio3 domain are involved in placental vasculature, regulating gene expression, imprinting status and DNA methylation.
Collapse
Affiliation(s)
- Ximeijia Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Chenghao Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Jiahang Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Haopeng Yang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Jiwei Shen
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Fengwei Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, Heilongjiang, China.
| |
Collapse
|
2
|
Lin HP, Rea M, Wang Z, Yang C. Down-regulation of lncRNA MEG3 promotes chronic low dose cadmium exposure-induced cell transformation and cancer stem cell-like property. Toxicol Appl Pharmacol 2021; 430:115724. [PMID: 34520792 DOI: 10.1016/j.taap.2021.115724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal and one of carcinogens that cause lung cancer. However, the exact mechanism of Cd carcinogenesis remains unclear. To investigate the mechanism of Cd carcinogenesis, we exposed human bronchial epithelial cells (BEAS-2B) to a low dose of Cd (2.5 μM, CdCl2) for 9 months, which caused cell malignant transformation and generated cancer stem cell (CSC)-like cells. The goal of this study is to investigate the underlying mechanism. The long non-coding RNA (lncRNA) microarray analysis showed that the expression level of a tumor suppressive lncRNA maternally expressed 3 (MEG3) is significantly down-regulated in Cd-transformed cells, which is confirmed by further q-PCR analysis. Mechanistically, it was found that chronic Cd exposure up-regulates the levels of DNA methyltransferases (DNMTs), which increases the methylation of the differentially methylated region (DMR) 1.5 kb upstream of MEG3 transcription start site to reduce MEG3 expression. Functional studies showed that stably overexpressing MEG3 in Cd-transformed cells significantly reduces their transformed phenotypes. Moreover, stably overexpressing MEG3 in parental non-transformed human bronchial epithelial cells significantly impaired the capability of chronic Cd exposure to induce cell transformation and CSC-like property. Further mechanistic studies revealed that the cell cycle inhibitor p21 level is reduced and retinoblastoma protein (Rb) phosphorylation is increased in Cd-transformed cells to promote cell cycle progression. In addition, Cd-transformed cells also expressed higher levels of Bcl-xL and displayed apoptosis resistance. In contrast, stably overexpressing MEG3 increased p21 levels and reduced Rb phosphorylation and Bcl-xL levels in Cd-exposed cells and reduced their cell cycle progression and apoptosis resistance. Together, these findings suggest that MEG3 down-regulation may play important roles in Cd-induced cell transformation and CSC-like property by promoting cell cycle progression and apoptosis resistance.
Collapse
Affiliation(s)
- Hsuan-Pei Lin
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, United States of America
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, United States of America
| | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western University School of Medicine, Cleveland, OH 44109, United States of America
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western University School of Medicine, Cleveland, OH 44109, United States of America.
| |
Collapse
|
3
|
Qi S, Zhu X, Wang X, Chen F, Yan Y, Shang G, Chen W. Role of protein delta homolog 1 in the proliferation and differentiation of ameloblasts. Mol Med Rep 2017; 17:3537-3544. [PMID: 29257328 PMCID: PMC5802151 DOI: 10.3892/mmr.2017.8290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
Protein delta homolog 1 (DLK1) regulates the odontoblastic differentiation of human dental pulp stem cells. It was hypothesized that DLK1 may exert regulatory effects on epithelial‑mesenchymal interactions in tooth development. The present study investigated the expression of DLK1 during the development of mouse enamel and its role in the proliferation and differentiation of ameloblast‑lineage cells (ALCs). DLK1 expression was upregulated in ameloblasts in the first mandibular molar during the entire process of enamel development. The mRNA and protein levels of DLK1 were significantly upregulated following ameloblastic induction in ALCs. In addition, overexpression of DLK1 promoted the proliferation of ALCs, inhibited ameloblastic differentiation, upregulated the expression of amelogenin and enamelin, and downregulated the expression of odontogenic ameloblast‑associated protein and kallikrein 4. The results of the present study suggested that DLK1 may be a potent regulator of ameloblast proliferation and differentiation, and may regulate enamel formation during tooth development.
Collapse
Affiliation(s)
- Shengcai Qi
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xueqin Zhu
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yanhong Yan
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial‑Head and Neck Oncology, and Faculty of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
4
|
Beygo J, Küchler A, Gillessen-Kaesbach G, Albrecht B, Eckle J, Eggermann T, Gellhaus A, Kanber D, Kordaß U, Lüdecke HJ, Purmann S, Rossier E, van de Nes J, van der Werf IM, Wenzel M, Wieczorek D, Horsthemke B, Buiting K. New insights into the imprinted MEG8-DMR in 14q32 and clinical and molecular description of novel patients with Temple syndrome. Eur J Hum Genet 2017. [PMID: 28635951 DOI: 10.1038/ejhg.2017.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The chromosomal region 14q32 contains several imprinted genes, which are expressed either from the paternal (DLK1 and RTL1) or the maternal (MEG3, RTL1as and MEG8) allele only. Imprinted expression of these genes is regulated by two differentially methylated regions (DMRs), the germline DLK1/MEG3 intergenic (IG)-DMR (MEG3/DLK1:IG-DMR) and the somatic MEG3-DMR (MEG3:TSS-DMR), which are methylated on the paternal and unmethylated on the maternal allele. Disruption of imprinting in the 14q32 region results in two clinically distinct imprinting disorders, Temple syndrome (TS14) and Kagami-Ogata syndrome (KOS14). Another DMR with a yet unknown function is located in intron 2 of MEG8 (MEG8-DMR, MEG8:Int2-DMR). In contrast to the IG-DMR and the MEG3-DMR, this somatic DMR is methylated on the maternal chromosome and unmethylated on the paternal chromosome. We have performed extensive methylation analyses by deep bisulfite sequencing of the IG-DMR, MEG3-DMR and MEG8-DMR in different prenatal tissues including amniotic fluid cells and chorionic villi. In addition, we have studied the methylation pattern of the MEG8-DMR in different postnatal tissues. We show that the MEG8-DMR is hypermethylated in each of 13 non-deletion TS14 patients (seven newly identified and six previously published patients), irrespective of the underlying molecular cause, and is always hypomethylated in the four patients with KOS14, who have different deletions not encompassing the MEG8-DMR itself. The size and the extent of the deletions and the resulting methylation pattern suggest that transcription starting from the MEG3 promoter may be necessary to establish the methylation imprint at the MEG8-DMR.
Collapse
Affiliation(s)
- Jasmin Beygo
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Küchler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Beate Albrecht
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jonas Eckle
- Sozialpädiatrisches Zentrum, St. Elisabeth-Stiftung, Ravensburg, Germany
| | | | - Alexandra Gellhaus
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Ulrike Kordaß
- MVZ für Humangenetik und Molekularpathologie Rostock, Zweigstelle Greifswald, Greifswald, Germany
| | - Hermann-Josef Lüdecke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sabine Purmann
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Eva Rossier
- Institut für Medizinische Genetik und angewandte Genomik, Universiät Tübingen, Tübingen, Germany.,Genetikum Stuttgart, Stuttgart, Germany
| | - Johannes van de Nes
- Institute of Neuropathology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pathology, University of Bochum, Bochum, Germany
| | | | | | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.,Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Qi S, Yan Y, Wen Y, Li J, Wang J, Chen F, Tang X, Shang G, Xu Y, Wang R. The effect of delta-like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells. Cell Prolif 2017; 50. [PMID: 28205268 DOI: 10.1111/cpr.12335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION This study aimed to investigate the functions of delta-like homologue 1 (DLK1) in the proliferation and differentiation of human dental pulp stem cells (hDPSCs). METHODS Immunohistochemical analysis was used to determine the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), DLK1, NOTCH1 and p-ERK1/2 in the mouse first maxillary molar. Recombinant lentivirus was constructed to overexpress DLK1 stably in hDPSCs. The cell viability and proliferation of hDPSCs were examined by CCK8 and EdU incorporation assay respectively. The odontoblastic differentiation of hDPSCs was determined by detection of ALPase activity assay, ALP and alizarin red staining and the expression of mineralization-related genes including ALP, DSPP and dental matrix protein. The mRNA and protein levels of DLK1 and p-ERK1/2 protein expression were detected. ERK inhibitor was used to test the differentiation effect of DLK1 on hDPSCs. RESULTS Delta-like homologue 1 was highly expressed on the odontoblasts and dental pulp cells on the first maxillary molar; the expression of p-ERK1/2 is similar with the DLK1 in the same process. The expression level of DLK1 increased significantly after the odontoblastic induction of hDPSCs. DLK1 overexpression increased the proliferation ability of hDPSCs and inhibited odontoblastic differentiation of hDPSCs. The protein level of p-ERK1/2 significantly increased in hDPSCs/dlk1-oe group. ERK signalling pathway inhibitor reversed the odontoblastic differentiation effects of DLK1 on hDPSCs. CONCLUSIONS The proliferation of hDPSCs was promoted after DLK1 overexpression. DLK1 inhibited the odontoblastic differentiation of hDPSCs, which maybe through ERK signalling pathway.
Collapse
Affiliation(s)
- Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanhong Yan
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yue Wen
- Institute of Stomatology, Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jialiang Li
- Institute of Stomatology, Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoshan Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guangwei Shang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Raorao Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|