1
|
Mitra R, Hale TK, Fitzsimons HL, Gray C, White MPJ. A novel three-dimensional model of infantile haemangioma. Br J Dermatol 2025; 192:874-882. [PMID: 39686709 DOI: 10.1093/bjd/ljae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Infantile haemangioma (IH) is vascular tumour in infants that exhibits rapid proliferation and angiogenesis followed by gradual involution. Ten per cent of cases are associated with disfiguring complications that require medical intervention with beta blockers, surgery or laser therapy. OBJECTIVES To improve our understanding of the disease mechanisms of IH with an in vitro three-dimensional model. METHODS We isolated and expanded CD31+ endothelial cells (HemECs) from patient-derived IH cell lines and grew them as spheroids in STEMdiffTM Endothelial Expansion Medium. The cells were then embedded in an extracellular matrix hydrogel with reduced growth factors to initiate angiogenic sprouting. RESULTS HemEC spheroids expressed CD31, glucose transporter 1, vascular endothelial growth factor receptor 2, CD44, vimentin and CD133 but not smooth muscle actin, indicating their similarity to immature IH blood vessels and their angiogenic potential. Proteomic analysis revealed similar homology in terms of protein expression in spheroids and IH tissue. The high-throughput application of the three-dimensional angiogenesis model was tested using propranolol to inhibit sprouting of spheroids with increased toxicity response. CONCLUSIONS This study reports the development of a three-dimensional model of IH that closely resembles the angiogenic features of IH for molecular analysis and drug screening.
Collapse
Affiliation(s)
- Raka Mitra
- Gillies McIndoe Research Institute, Wellington, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helen L Fitzsimons
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Zhang W, Sun L, Gao H, Wang S. Mechanism of the HIF-1α/VEGF/VEGFR-2 pathway in the proliferation and apoptosis of human haemangioma endothelial cells. Int J Exp Pathol 2023; 104:258-268. [PMID: 37381118 PMCID: PMC10500167 DOI: 10.1111/iep.12485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023] Open
Abstract
Haemangiomas (HAs) are prevalent vascular endothelial cell tumours. With respect to the possible involvement of HIF-1α in HAs, we have explored its role in haemangioma endothelial cell (HemEC) proliferation and apoptosis. shRNA HIF-1α and pcDNA3.1 HIF-α were manipulated into HemECs. HIF-α, VEGF, and VEGFR-2 mRNA and protein levels were assessed by qRT-PCR and Western blotting. Cell proliferation and viability, cell cycle and apoptosis, migration and invasion, and ability to form tubular structures were assessed by colony formation assay, CCK-8, flow cytometry, Transwell assay, and tube formation assay. Cell cycle-related protein levels, and VEGF and VEGFR-2 protein interaction were detected by Western blot and immunoprecipitation assays. An Haemangioma nude mouse model was established by subcutaneous injection of HemECs. Ki67 expression was determined by immunohistochemical staining. HIF-1α silencing suppressed HemEC neoplastic behaviour and promoted apoptosis. HIF-1α facilitated VEGF/VEGFR-2 expression and the VEGF had interacted with VEGFR-2 at protein - protein level. HIF-1α silencing arrested HemECs at G0/G1 phase, diminished Cyclin D1 protein level, and elevated p53 protein level. VEGF overexpression partially abrogated the effects of HIF-1α knockdown on inhibiting HemEC malignant behaviours. Inhibiting HIF-1α in nude mice with HAs repressed tumour growth and Ki67-positive cells. Briefly, HIF-1α regulated HemEC cell cycle through VEGF/VEGFR-2, thus promoting cell proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Wenpei Zhang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lei Sun
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongxia Gao
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shengquan Wang
- Department of Vascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanChina
- Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Jiao B, Liu S, Tan X, Lu P, Wang D, Xu H. Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases. Biomed Pharmacother 2021; 137:111329. [PMID: 33545660 DOI: 10.1016/j.biopha.2021.111329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Semaphorins, the neuronal guidance cues, were shown to have broad influences on pathophysiological processes such as bone remodeling, immune responses, and angiogenesis. In particular, Class-3 Semaphorins (SEMA3) is considered a vital regulator involved in angiogenesis. Scientific evidence has pointed to the role of angiogenesis in many diseases, and numerous efforts have been made to explore the possibilities of curing those diseases by targeting angiogenesis. Nevertheless, the efficacies are limited owing to the complex mechanisms of angiogenesis. Hence, investigating the mechanisms of SEMA3 in angiogenesis may contribute to novel therapeutics for diseases. Previous reviews mainly focused on the various functions of semaphorins in one particular disease, and the specific angiogenesis mechanism of SEMA3 in diverse diseases has not been well elucidated. Additionally, the role of SEMA3 in angiogenesis remains elusive, as contradicting results have been found in different disease types. Some evidence from recent studies implies that, while most SEMA3 molecules inhibit pathological angiogenesis in different diseases, occasionally SEMA3 may also promote angiogenesis. This review summarizes the specific role of SEMA3 in a variety of angiogenesis-associated diseases, and documents SEMA3 may be a promising therapeutic target for treating angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Wu M, Tang Y, Hu G, Yang C, Ye K, Liu X. miR-4458 directly targets IGF1R to inhibit cell proliferation and promote apoptosis in hemangioma. Exp Ther Med 2020; 19:3017-3023. [PMID: 32256788 PMCID: PMC7086214 DOI: 10.3892/etm.2020.8546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Hemangiomas (HAs) are benign neoplasms of the vasculature. MicroRNA-4458 (miR-4458) has been reported to function as a tumor suppressor in multiple malignancies, but its biological function in HAs remains unknown. In the present study, the potential role of miR-4458 in HA-derived endothelial cells (HDECs) was investigated. Firstly, reverse-transcription-quantitative PCR analysis was used to confirm the expression of miR-4458 in HDECs following transfection with miR-4458 mimics or inhibitor. Subsequently, MTT and EdU assays were performed and subsequently determined that miR-4458 overexpression significantly inhibited proliferation, and knockdown promoted cell proliferation in HDECs. Flow cytometry analysis revealed that miR-4458 overexpression induced cell cycle arrest, whereas knockdown reversed G0/G1 phase arrest and apoptosis. Furthermore, insulin-like growth factor 1 receptor (IGF1R) was identified as a target of miR-4458. IGF1R knockdown enhanced the effects of miR-4458 on cell proliferation, cell cycle G0/G1 phase arrest and apoptosis in HDECs. Taken together, the results revealed that miR-4458 targeting of IGF1R may serve as a novel therapeutic strategy for treating patients with HAs.
Collapse
Affiliation(s)
- Maosong Wu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Yongsheng Tang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Gang Hu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Kaichuang Ye
- Department of Vascular Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 230011, P.R. China
| | - Xianluo Liu
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| |
Collapse
|
6
|
Overman J, Fontaine F, Wylie-Sears J, Moustaqil M, Huang L, Meurer M, Chiang IK, Lesieur E, Patel J, Zuegg J, Pasquier E, Sierecki E, Gambin Y, Hamdan M, Khosrotehrani K, Andelfinger G, Bischoff J, Francois M. R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. eLife 2019; 8:43026. [PMID: 31358114 PMCID: PMC6667216 DOI: 10.7554/elife.43026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Propranolol is an approved non-selective β-adrenergic blocker that is first line therapy for infantile hemangioma. Despite the clinical benefit of propranolol therapy in hemangioma, the mechanistic understanding of what drives this outcome is limited. Here, we report successful treatment of pericardial edema with propranolol in a patient with Hypotrichosis-Lymphedema-Telangiectasia and Renal (HLTRS) syndrome, caused by a mutation in SOX18. Using a mouse pre-clinical model of HLTRS, we show that propranolol treatment rescues its corneal neo-vascularisation phenotype. Dissection of the molecular mechanism identified the R(+)-propranolol enantiomer as a small molecule inhibitor of the SOX18 transcription factor, independent of any anti-adrenergic effect. Lastly, in a patient-derived in vitro model of infantile hemangioma and pre-clinical model of HLTRS we demonstrate the therapeutic potential of the R(+) enantiomer. Our work emphasizes the importance of SOX18 etiological role in vascular neoplasms, and suggests R(+)-propranolol repurposing to numerous indications ranging from vascular diseases to metastatic cancer.
Collapse
Affiliation(s)
- Jeroen Overman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mehdi Moustaqil
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Lan Huang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Marie Meurer
- Centre de Recherche en Cancérologie de Marseille (CRCM Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258, Aix-Marseille University UM105, Marseille, France
| | - Ivy Kim Chiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Emmanuelle Lesieur
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jatin Patel
- Translational Research Institute, Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258, Aix-Marseille University UM105, Marseille, France
| | - Emma Sierecki
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales, Sydney, Australia
| | | | - Kiarash Khosrotehrani
- Translational Research Institute, Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal, Ste-Justine University Hospital Centre, Montréal, Canada
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Nakayama H, Kusumoto C, Nakahara M, Fujiwara A, Higashiyama S. Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor Microenvironment. Front Physiol 2018; 9:1662. [PMID: 30532711 PMCID: PMC6265511 DOI: 10.3389/fphys.2018.01662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Axon guidance molecules play an important role in regulating proper neuronal networking during neuronal development. They also have non-neuronal properties, which include angiogenesis, inflammation, and tumor development. Semaphorin 3F (SEMA3F), a member of the class 3 semaphorins, was initially identified as an axon guidance factor, that repels axons and collapses growth cones. However, SEMA3F has similar effects on endothelial cells (ECs) and tumor cells. In this review, we discuss the novel molecular mechanisms underlying SEMA3F activity in vascular and tumor biology. Recent evidence suggests that SEMA3F functions as a PI3K-Akt-mTOR inhibitor in mammalian cells, including T cells, ECs, and tumor cells. Therefore, SEMA3F may have broad therapeutic implications. We also discuss the key role of axon guidance molecules as regulators of the tumor microenvironment. Netrin-1, a chemoattractant factor in the neuronal system, promotes tumor progression by enhancing angiogenesis and metastasis. Moreover, our recent studies demonstrate that netrin-1/neogenin interactions augment CD4+ T cell chemokinesis and elicit pro-inflammatory responses, suggesting that netrin-1 plays a key role in modulating the function of a tumor and its surrounding cells in the tumor microenvironment. Overall, this review focuses on SEMA3F and netrin-1 signaling mechanisms to understand the diverse biological functions of axon guidance molecules.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan.,Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| | - Chiaki Kusumoto
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Masako Nakahara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Akira Fujiwara
- Department of Medical Science and Technology, Hiroshima International University, Higashihiroshima, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Japan
| |
Collapse
|
8
|
Rapamycin inhibits the proliferation of endothelial cells in hemangioma by blocking the mTOR-FABP4 pathway. Biomed Pharmacother 2016; 85:272-279. [PMID: 27914823 DOI: 10.1016/j.biopha.2016.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022] Open
Abstract
FABP4 is widely expressed in both normal and pathologic tissues. It promotes cell proliferation, survival and migration of endothelial cells, and therefore, angiogenesis. However, the role of FABP4 in hemangioma or hemangioma endothelial cells (HemECs) has not been explored. In this study, we investigated whether FABP4 directly regulates the proliferation of HemECs. The expression of cell cycle checkpoint genes was analyzed with the microarray data of human dermal microvascular endothelial cells (HDVECs) and infantile hemangioma endothelial cells. Real-time RT-PCR and western blotting were used to examine the expression of FABP4 in HemECs. Next, the FABP4 expression was inhibited in HemECs using siRNA or rapamycin and upregulated using retroviral transduction of HemECs to assess its influence on proliferation of HemECs. The microarray data showed that cell cycle checkpoint genes were upregulated in HemECs. Moreover, HemECs showed significantly higher proliferation rates than HDVECs. The expression of FABP4 and mTOR was increased in the HemECs. While FABP4 knockdown reduced the BrdU incorporation and cell number of HemECs as expected, cell proliferation was accelerated by FABP4 over-expression. Moreover, rapamycin (10nM) inhibited mTOR-FABP4 signaling and HemEC proliferation. Taken together, these results indicated that mTOR signaling pathway-activated FABP4 directly regulates the proliferation of endothelial cells in hemangioma. Rapamycin and inhibitors of FABP4 have therapeutic potential for treating infantile hemangiomas.
Collapse
|
9
|
Meyer LAT, Fritz J, Pierdant-Mancera M, Bagnard D. Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adh Migr 2016; 10:700-708. [PMID: 27906605 PMCID: PMC5160035 DOI: 10.1080/19336918.2016.1261785] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets. Targeting SNP activities by small molecules, antibodies and peptides or by soluble semaphorins have been proposed as new therapeutic approach. This review is focusing on the latest demonstration of this potential and discusses some of the key questions that need to be addressed before translating SNP targeting into clinically relevant approaches.
Collapse
Affiliation(s)
- Lionel A. T. Meyer
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Justine Fritz
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Marie Pierdant-Mancera
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| |
Collapse
|