1
|
Rezaei Z, Wang N, Yang Y, Govindaraj K, Velasco JJ, Martinez Blanco AD, Bae NH, Lee H, Shin SR. Enhancing organoid technology with carbon-based nanomaterial biosensors: Advancements, challenges, and future directions. Adv Drug Deliv Rev 2025; 222:115592. [PMID: 40324529 DOI: 10.1016/j.addr.2025.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Various carbon-based nanomaterials (CBNs) have been utilized to develop nano- and microscale biosensors that enable real-time and continuous monitoring of biochemical and biophysical changes in living biological systems. The integration of CBN-based biosensors into organoids has recently provided valuable insights into organoid development, disease modeling, and drug responses, enhancing their functionality and expanding their applications in diverse biomedical fields. These biosensors have been particularly transformative in studying neurological disorders, cardiovascular diseases, cancer progression, and liver toxicity, where precise, non-invasive monitoring is crucial for understanding pathophysiological mechanisms and assessing therapeutic efficacy. This review introduces intra- and extracellular biosensors incorporating CBNs such as graphene, carbon nanotubes (CNTs), graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), and fullerenes. Additionally, it discusses strategies for improving the biocompatibility of CBN-based biosensors and minimizing their potential toxicity to ensure long-term organoid viability. Key challenges such as biosensor integration, data accuracy, and functional compatibility with specific organoid models are also addressed. Furthermore, this review highlights how CBN-based biosensors enhance the precision and relevance of organoid models in biomedical research, particularly in organ-specific applications such as brain-on-a-chip systems for neurodegenerative disease studies, liver-on-a-chip platforms for hepatotoxicity screening, and cardiac organoids for assessing cardiotoxicity in drug development. Finally, it explores how biosensing technologies could revolutionize personalized medicine by enabling high throughput drug screening, patient-specific disease modeling, and integrated sensing platforms for early diagnostics. By capturing current advancements and future directions, this review underscores the transformative potential of carbon-based nanotechnology in organoid research and its broader impact on medical science.
Collapse
Affiliation(s)
- Zahra Rezaei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Niyou Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Yipei Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Kannan Govindaraj
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Department of Developmental Bioengineering, TechMed Centre, University of Twente, Drienerlolaan 5, Enschede 7522NB, the Netherlands
| | - Jose Joaquin Velasco
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Monterrey Institute of Technology, School of Science and Engineering, Eugenio Garza Sada Avenue 2501 South, Monterrey, Nuevo Leon 64849, Mexico
| | - Alvaro Dario Martinez Blanco
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Monterrey Institute of Technology, School of Science and Engineering, Epigmenio González 500, Fraccionamiento San Pablo, Santiago de Querétaro, Querétaro 76130, Mexico
| | - Nam Ho Bae
- Center for Nano-Bio Developement, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - HeaYeon Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; MARA Nanotech, INC. 4th floor, Hanmir Hall, Yongdang Campus, Pukyung National University, 365 Sinseon-ro, Nam-gu, Busan 48547, Republic of Korea; MARA Nanotech New York, INC. 1 Pennsylvania Plaza, Suite 1423, New York, NY 10119, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Chakrabarty P, Illath K, Kar S, Nagai M, Santra TS. Combinatorial physical methods for cellular therapy: Towards the future of cellular analysis? J Control Release 2023; 353:1084-1095. [PMID: 36538949 DOI: 10.1016/j.jconrel.2022.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The physical energy activated techniques for cellular delivery and analysis is one of the most rapidly expanding research areas for a variety of biological and biomedical discoveries. These methods, such as electroporation, optoporation, sonoporation, mechanoporation, magnetoporation, etc., have been widely used in delivering different biomolecules into a range of primary and patient-derived cell types. However, the techniques when used individually have had limitations in delivery and co-delivery of diverse biomolecules in various cell types. In recent years, a number of studies have been performed by combining the different membrane disruption techniques, either sequentially or simultaneously, in a single study. The studies, referred to as combinatorial, or hybrid techniques, have demonstrated enhanced transfection, such as efficient macromolecular and gene delivery and co-delivery, at lower delivery parameters and with high cell viability. Such studies can open up new and exciting avenues for understanding the subcellular structure and consequently facilitate the development of novel therapeutic strategies. This review consequently aims at summarising the different developments in hybrid therapeutic techniques. The different methods discussed include mechano-electroporation, electro-sonoporation, magneto-mechanoporation, magnetic nanoparticles enhanced electroporation, and magnetic hyperthermia studies. We discuss the clinical status of the different methods and conclude with a discussion on the future prospects of the combinatorial techniques for cellular therapy and diagnostics.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
4
|
He Y, Hu C, Li Z, Wu C, Zeng Y, Peng C. Multifunctional carbon nanomaterials for diagnostic applications in infectious diseases and tumors. Mater Today Bio 2022; 14:100231. [PMID: 35280329 PMCID: PMC8896867 DOI: 10.1016/j.mtbio.2022.100231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious diseases (such as Corona Virus Disease 2019) and tumors pose a tremendous challenge to global public health. Early diagnosis of infectious diseases and tumors can lead to effective control and early intervention of the patient's condition. Over the past few decades, carbon nanomaterials (CNs) have attracted widespread attention in different scientific disciplines. In the field of biomedicine, carbon nanotubes, graphene, carbon quantum dots and fullerenes have the ability of improving the accuracy of the diagnosis by the improvement of the diagnostic approaches. Therefore, this review highlights their applications in the diagnosis of infectious diseases and tumors over the past five years. Recent advances in the field of biosensing, bioimaging, and nucleic acid amplification by such CNs are introduced and discussed, emphasizing the importance of their unique properties in infectious disease and tumor diagnosis and the challenges and opportunities that exist for future clinical applications. Although the application of CNs in the diagnosis of several diseases is still at a beginning stage, biosensors, bioimaging technologies and nucleic acid amplification technologies built on CNs represent a new generation of promising diagnostic tools that further support their potential application in infectious disease and tumor diagnosis.
Collapse
Affiliation(s)
| | | | - Zhijia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chuan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuanyuan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
5
|
Farooq A, Sabah S, Dhou S, Alsawaftah N, Husseini G. Exogenous Contrast Agents in Photoacoustic Imaging: An In Vivo Review for Tumor Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:393. [PMID: 35159738 PMCID: PMC8840344 DOI: 10.3390/nano12030393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
The field of cancer theranostics has grown rapidly in the past decade and innovative 'biosmart' theranostic materials are being synthesized and studied to combat the fast growth of cancer metastases. While current state-of-the-art oncology imaging techniques have decreased mortality rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within the field of photoacoustic imaging-a relatively new imaging modality-for tumor detection, with a special focus on imaging and transducer parameters. This paper also details the different types of contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and dye-based contrast agents. We conclude this review by discussing the challenges and future direction of photoacoustic imaging.
Collapse
Affiliation(s)
- Afifa Farooq
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Shafiya Sabah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Salam Dhou
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Nour Alsawaftah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
| | - Ghaleb Husseini
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah 26666, United Arab Emirates; (A.F.); (S.S.); (N.A.)
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
6
|
More MP, Deshmukh PK. Development of amine-functionalized superparamagnetic iron oxide nanoparticles anchored graphene nanosheets as a possible theranostic agent in cancer metastasis. Drug Deliv Transl Res 2021; 10:862-877. [PMID: 32103449 DOI: 10.1007/s13346-020-00729-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The major objective of the present investigation was to assess the targeting potential of a designed system for breast cancer at metastatic phases with imaging ability. In a nutshell, we have developed surface-engineered graphene oxide (GO) nanosheets by covalent linking with amine-functionalized iron oxide nanoparticles (IONPs) (GOIOIs). Gefitinib (Gf) was selected as a model drug and entrapped in between exfoliated GO sheets (GOIGF) via π-π* stacking before functionalization with IONPs. Preliminary characterization of GO, IONPs, GOIOI, and GOIGF was performed using UV-visible and Fourier transform infrared spectroscopy. Scanning and transmission electron microscopy studies confirmed successful surface engineering of GO with IONPs. The in vitro drug release study demonstrated sustained release of Gf. The magnetic behavior of IONPs and GOIOI demonstrated a sigmoidal-shaped hysteresis loop with superparamagnetic properties. The in vitro cell cytotoxicity assay was carried out on MDA-MB-231 breast cancer adenocarcinoma cell lines. The cell cytotoxicity assay showed 61.18% inhibition of cell growth with 30 ppm concentration containing 64% of the drug, whereas 100% of the pure drug revealed only 56% of inhibition. In the near future, GOIOI could be tailored further for theranostic research, especially for metastatic cancers. Graphical abstract.
Collapse
Affiliation(s)
- Mahesh P More
- Postgraduate Department of Pharmaceutics, H.R. Patel Institute of Pharmaceutical Education and Research, Karvand Naka, Shirpur, Dist., Dhule, MS, 425405, India
- Department of Pharmaceutics, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, MS, 424001, India
| | - Prashant K Deshmukh
- Postgraduate Department of Pharmaceutics, H.R. Patel Institute of Pharmaceutical Education and Research, Karvand Naka, Shirpur, Dist., Dhule, MS, 425405, India.
| |
Collapse
|
7
|
Dash BS, Jose G, Lu YJ, Chen JP. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int J Mol Sci 2021; 22:2989. [PMID: 33804239 PMCID: PMC8000837 DOI: 10.3390/ijms22062989] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the deadliest diseases in human history with extremely poor prognosis. Although many traditional therapeutic modalities-such as surgery, chemotherapy, and radiation therapy-have proved to be successful in inhibiting the growth of tumor cells, their side effects may vastly limited the actual benefits and patient acceptance. In this context, a nanomedicine approach for cancer therapy using functionalized nanomaterial has been gaining ground recently. Considering the ability to carry various anticancer drugs and to act as a photothermal agent, the use of carbon-based nanomaterials for cancer therapy has advanced rapidly. Within those nanomaterials, reduced graphene oxide (rGO), a graphene family 2D carbon nanomaterial, emerged as a good candidate for cancer photothermal therapy due to its excellent photothermal conversion in the near infrared range, large specific surface area for drug loading, as well as functional groups for functionalization with molecules such as photosensitizers, siRNA, ligands, etc. By unique design, multifunctional nanosystems could be designed based on rGO, which are endowed with promising temperature/pH-dependent drug/gene delivery abilities for multimodal cancer therapy. This could be further augmented by additional advantages offered by functionalized rGO, such as high biocompatibility, targeted delivery, and enhanced photothermal effects. Herewith, we first provide an overview of the most effective reducing agents for rGO synthesis via chemical reduction. This was followed by in-depth review of application of functionalized rGO in different cancer treatment modalities such as chemotherapy, photothermal therapy and/or photodynamic therapy, gene therapy, chemotherapy/phototherapy, and photothermal/immunotherapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
8
|
Pineux F, Federico S, Klotz KN, Kachler S, Michiels C, Sturlese M, Prato M, Spalluto G, Moro S, Bonifazi D. Targeting G Protein-Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem 2020; 15:1909-1920. [PMID: 32706529 DOI: 10.1002/cmdc.202000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The A3 adenosine receptor (AR) is a G protein-coupled receptor (GPCR) overexpressed in the membrane of specific cancer cells. Thus, the development of nanosystems targeting this receptor could be a strategy to both treat and diagnose cancer. Iron-filled carbon nanotubes (CNTs) are an optimal platform for theranostic purposes, and the use of a magnetic field can be exploited for cancer magnetic cell sorting and thermal therapy. In this work, we have conjugated an A3 AR ligand on the surface of iron-filled CNTs with the aim of targeting cells overexpressing A3 ARs. In particular, two conjugates bearing PEG linkers of different length were designed. A docking analysis of A3 AR showed that neither CNT nor linker interferes with ligand binding to the receptor; this was confirmed by in vitro preliminary radioligand competition assays on A3 AR. Encouraged by this result, magnetic cell sorting was applied to a mixture of cells overexpressing or not the A3 AR in which our compound displayed indiscriminate binding to all cells. Despite this, it is the first time that a GPCR ligand has been anchored to a magnetic nanosystem, thus it opens the door to new applications for cancer treatment.
Collapse
Affiliation(s)
- Florent Pineux
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Versbacher Straße 9, 97078, Würzburg, Germany
| | - Carine Michiels
- Namur Research Institute for Life Science (NARILIS), Unité de Recherche en Biologie Cellulaire (URBC), University of Namur, 5000, Namur, Belgium
| | - Mattia Sturlese
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain.,Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L.Giorgeri 1, 34127, Trieste, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco Molecular Modeling Section (MMS), Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Davide Bonifazi
- Institut für Organische Chemie, Universität Wien, Währinger Str. 38, 1090, Wien, Austria
| |
Collapse
|
9
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
10
|
Bertran A, Sandoval S, Oró-Solé J, Sánchez À, Tobias G. Particle size determination from magnetization curves in reduced graphene oxide decorated with monodispersed superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 2020; 566:107-119. [DOI: 10.1016/j.jcis.2020.01.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022]
|
11
|
Kaboudin B, Saghatchi F, Kazemi F. Synthesis of decorated carbon nanotubes with Fe3O4 and Au nanoparticles and their application in catalytic oxidation of alcohols in water. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Amiri M, Salavati-Niasari M, Akbari A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 2019; 265:29-44. [PMID: 30711796 DOI: 10.1016/j.cis.2019.01.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
A valuable site-directed application in the field of nanomedicine is targeted drug delivery using magnetic metal oxide nanoparticles by applying an external magnetic field at the target tissue. The magnetic property of these structures allows controlling the orientation and location of particles by changing the direction of the applied external magnetic field. Pharmaceutical design and research in the field of nanotechnology offer novel solutions for diagnosis and therapies. This review summarizes magnetic nanoparticles and magnetic spinel ferrit's properties, remarkable approaches in magnetic liposomes, magnetic polymeric nanoparticles, MRI, hyperthermia and especially magnetic drug delivery systems, which have recently developed in the field of magnetic nanoparticles and their medicinal applications. Here, we discuss spinel ferrite (SF) as magnetic materials that are a significant class of composite metal oxides. They contain ferric ions and have the general structural formula M2+Fe23+O4 (where M = Co,Ni,Zn,etc.). This structure indicates unique multifunctional properties, such as excellent magnetic characteristics, high specific surface area, surface active sites, high chemical stability, tuneable shape and size, and options for functionalization. The review assesses the current efforts on synthesis, properties and medical application of magnetic spinel ferrites nanoparticles based on cobalt, nickel and zinc. Based on this review, it can be concluded that MNPs and SFNPs have unlimited ability in biomedical applications. However, the practical application of SFNPs on a huge scale still needs to be considered and evaluated.
Collapse
|
13
|
Graphene-based materials: The missing piece in nanomedicine? Biochem Biophys Res Commun 2018; 504:686-689. [DOI: 10.1016/j.bbrc.2018.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
14
|
Mehra NK, Jain AK, Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug Discov Today 2017; 23:1016-1025. [PMID: 28965869 DOI: 10.1016/j.drudis.2017.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Carbon nanomaterials have been attracting attention in oncology for the development of safe and effective cancer nanomedicines in increasing improved patient compliance for generally recognized as safe (GRAS) prominence. Toxicity, safety and efficacy of carbon nanomaterials are the major concerns in cancer theranostics. Various parameters such as particle size and shape or surface morphology, surface charge, composition, oxidation and nonoxidative-stress-related mechanisms are prone to toxicity of the carbon nanomaterials. Currently, few cancer-related products have been available on the market, although some are underway in preclinical and clinical phases. Thus, our main aim is to provide comprehensive details on the carbon nanomaterials in oncology from the past two decades for patient compliance and safety.
Collapse
Affiliation(s)
- Neelesh K Mehra
- Sentiss Research Centre, Sentiss Pharma, Gurgaon, Haryana 122001, India.
| | - Amit K Jain
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Manoj Nahar
- Sentiss Research Centre, Sentiss Pharma, Gurgaon, Haryana 122001, India
| |
Collapse
|
15
|
Alegret N, Criado A, Prato M. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications. Curr Med Chem 2017; 24:529-536. [PMID: 27993110 PMCID: PMC5543568 DOI: 10.2174/0929867323666161216144218] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics.
Collapse
Affiliation(s)
- Núria Alegret
- Carbon Nanobiotechnology Group, CIC biomaGUNE, San Sebastián, Gipuzkoa, Spain
| | - Alejandro Criado
- Carbon Nanobiotechnology Group, CIC biomaGUNE, San Sebastián, Gipuzkoa, Spain
| | - Maurizio Prato
- Carbon Nanobiotechnology Group, CIC biomaGUNE, San Sebastián, Gipuzkoa, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao48013, Spain
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Orecchioni M, Ménard-Moyon C, Delogu LG, Bianco A. Graphene and the immune system: Challenges and potentiality. Adv Drug Deliv Rev 2016; 105:163-175. [PMID: 27235665 DOI: 10.1016/j.addr.2016.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
Abstract
In the growing area of nanomedicine, graphene-based materials (GBMs) are some of the most recent explored nanomaterials. For the majority of GBM applications in nanomedicine, the immune system plays a fundamental role. It is necessary to well understand the complexity of the interactions between GBMs, the immune cells, and the immune components and how they could be of advantage for novel effective diagnostic and therapeutic approaches. In this review, we aimed at painting the current picture of GBMs in the background of the immune system. The picture we have drawn looks like a cubist image, a sort of Picasso-like portrait looking at the topic from all perspectives: the challenges (due to the potential toxicity) and the potentiality like the conjugation of GBMs to biomolecules to develop advanced nanomedicine tools. In this context, we have described and discussed i) the impact of graphene on immune cells, ii) graphene as immunobiosensor, and iii) antibodies conjugated to graphene for tumor targeting. Thanks to the huge advances on graphene research, it seems realistic to hypothesize in the near future that some graphene immunoconjugates, endowed of defined immune properties, can go through preclinical test and be successfully used in nanomedicine.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Cécilia Ménard-Moyon
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et de Chimie Thérapeutique, 67000 Strasbourg, France
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy.
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d'Immunopathologie et de Chimie Thérapeutique, 67000 Strasbourg, France.
| |
Collapse
|
17
|
Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J Nanomedicine 2016; 11:3191-203. [PMID: 27486321 PMCID: PMC4957681 DOI: 10.2147/ijn.s110542] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed.
Collapse
Affiliation(s)
| | | | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster
| | - Udo Sechtem
- Division of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | | |
Collapse
|
18
|
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, Anvari E, Farhadi S, Yousefi M, Jadidi-Niaragh F. Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13:603-19. [DOI: 10.3109/1547691x.2016.1159264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shohreh Farhadi
- Department of Agricultural Engineering, Islamic Azad University, Tehran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:927-42. [DOI: 10.1016/j.msec.2016.01.063] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
|
20
|
Alexiou C, Fadeel B. Editorial: Brave new world – Focus on nanomedicine. Biochem Biophys Res Commun 2015; 468:409-10. [DOI: 10.1016/j.bbrc.2015.10.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|