1
|
Yoo A, Lee S. Neuronal growth regulator 1 may modulate interleukin-6 signaling in adipocytes. Front Mol Biosci 2023; 10:1148521. [PMID: 37187893 PMCID: PMC10175572 DOI: 10.3389/fmolb.2023.1148521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that plays both anti- and pro-inflammatory roles. Due to the restricted expression of membrane IL-6 receptor (IL-6R), most pro-inflammatory functions of IL-6 are attributed to its association with soluble IL-6R (sIL-6R). Neuronal growth regulator 1 (NEGR1) is a brain-enriched membrane protein that has recently been recognized as a risk factor for many human diseases including obesity, depression, and autism. In the present study, we report that the expression levels of IL-6 and IL-6R, as well as the phosphorylation of signal transducer and activator of transcription (STAT) 3, were significantly elevated in white adipose tissues of Negr1 knockout mice. Elevated levels of circulating IL-6 and sIL-6R have also been observed in Negr1 -/- mice. Furthermore, NEGR1 interacted with IL-6R, which was supported by subcellular fractionation and an in situ proximity ligation assay. Importantly, NEGR1 expression attenuated the phosphorylation of STAT3 by sIL-6R, suggesting that NEGR1 negatively regulates IL-6 trans-signaling. Taken together, we propose that NEGR1 may play a regulatory role in IL-6 signaling by interacting with IL-6R, which may contribute to a molecular link underlying obesity, inflammation, and the depression cycle.
Collapse
|
2
|
Yoo A, Joo Y, Cheon Y, Lee SJ, Lee S. Neuronal growth regulator 1 promotes adipocyte lipid trafficking via interaction with CD36. J Lipid Res 2022; 63:100221. [PMID: 35526561 PMCID: PMC9189132 DOI: 10.1016/j.jlr.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
|
3
|
Elevated Expression of JMJD5 Protein Due to Decreased miR-3656 Levels Contributes to Cancer Stem Cell-like Phenotypes under Overexpression of Cancer Upregulated Gene 2. Biomolecules 2022; 12:biom12010122. [PMID: 35053270 PMCID: PMC8774111 DOI: 10.3390/biom12010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Overexpression of cancer upregulated gene (CUG) 2 induces cancer stem cell-like phenotypes, such as enhanced epithelial-mesenchymal transition, sphere formation, and doxorubicin resistance. However, the precise mechanism of CUG2-induced oncogenesis remains unknown. We evaluated the effects of overexpression of CUG2 on microRNA levels using a microRNA microarray. Levels of miR-3656 were decreased when CUG2 was overexpressed; on the basis of this result, we further examined the target proteins of this microRNA. We focused on Jumonji C domain-containing protein 5 (JMJD5), as it has not been previously reported to be targeted by miR-3656. When CUG2 was overexpressed, JMJD5 expression was upregulated compared to that in control cells. A 3′ untranslated region (UTR) assay revealed that an miR-3656 mimic targeted the JMJD5 3′UTR, but the miR-3656 mimic failed to target a mutant JMJD5 3′UTR, indicating that miR-3656 targets the JMJD5 transcript. Administration of the miR-3656 mimic decreased the protein levels of JMD5 according to Western blotting. Additionally, the miR-3656 mimic decreased CUG2-induced cell migration, evasion, and sphere formation and sensitized the cells to doxorubicin. Suppression of JMJD5, with its small interfering RNA, impeded CUG2-induced cancer stem cell-like phenotypes. Thus, overexpression of CUG2 decreases miR-3656 levels, leading to upregulation of JMJD5, eventually contributing to cancer stem cell-like phenotypes.
Collapse
|
4
|
Zhou Z, Zhou Z, Huang Z, He S, Chen S. Histone-fold centromere protein W (CENP-W) is associated with the biological behavior of hepatocellular carcinoma cells. Bioengineered 2020; 11:729-742. [PMID: 32635817 PMCID: PMC8291794 DOI: 10.1080/21655979.2020.1787776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Centromere protein W (CENP-W), identified as a centromeric component, plays an important role in the cell life cycle. However, how CENPW expression affects biological processes in liver cancer cells remains unknown. In this article, we found that CENPW was overexpressed in liver cancer tissues. Low CENPW expression was correlated with a better prognosis in hepatocellular carcinoma (HCC) patients, compared to high CENPW expression. The results of qRT-PCR and western blot assay showed that CENPW was effectively knocked down in HCC cells using siRNA transfection. Cell proliferation, migration, and invasion were inhibited. Cell apoptosis rates were increased. The cells were arrested in the G2/M phase of the cell cycle. Subsequently, 127 differentially expressed genes (DEGs) were identified based on RNA-seq data. GO and KEGG enrichment and PPI network analysis were performed. The novel DEGs were found and mainly enriched in nucleosome assembly and the complement system. In summary, our study indicated that overexpression of CENPW implied unfavorable prognosis and CENPW might be the potential predictive biomarker in liver cancer. Downregulation of CENPW might inhibit the HCC developmentby regulating the expression of the molecules in nucleosomes and the complement system.
Collapse
Affiliation(s)
- Ziliang Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, China
| | - Zhechong Zhou
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, China
| | - Zhaoxia Huang
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, China
| | - Suhua He
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, China.,Department of Experimental Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University , Zhuhai, China
| |
Collapse
|
5
|
Wang Y, Fan LH, Yue W, Ouyang YC, Wang ZB, Hou Y, Schatten H, Sun QY. CENP-W regulates kinetochore-microtubule attachment and meiotic progression of mouse oocytes. Biochem Biophys Res Commun 2020; 527:8-14. [PMID: 32446395 DOI: 10.1016/j.bbrc.2020.04.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
Oocyte meiotic maturation failure and unfaithful chromosome segregation are major causes for female infertility. Here, we showed that CENP-W, a relatively novel member of the kinetochore protein family, was expressed in mouse oocytes from the germinal vesicle (GV) to metaphase II (MII) stages. Confocal microscopy revealed that CENP-W was localized in the germinal vesicle in the GV stage, and then became concentrated on kinetochores during oocyte maturation. Knockdown of CENP-W by specific siRNA injection in vitro caused kinetochore-microtubule detachment, resulting in severely defective spindles and misaligned chromosomes, leading to metaphase I arrest and failure of first polar body (PB1) extrusion. Correspondingly, spindle assembly checkpoint (SAC) activation was observed in CENP-W knockdown oocytes even after 10h of culture. Our results suggest that CENP-W acts as a kinetochore protein, which takes part in kinetochore-microtubule attachment, thus mediating the progression of oocyte meiotic maturation.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Two major alternative splice variants of beta-TrCP1 interact with CENP-W with different binding preferences. Genes Genomics 2018; 41:167-174. [DOI: 10.1007/s13258-018-0748-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
|
7
|
Cheon Y, Jeon S, Lee S. Centromere protein W interacts with beta-transducin repeat-containing protein 1 and modulates its subcellular localization. FEBS Lett 2016; 590:4441-4452. [DOI: 10.1002/1873-3468.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/12/2016] [Accepted: 10/29/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yeongmi Cheon
- Department of Microbiology and Molecular Biology; Chungnam National University; Daejeon Korea
| | - Seyeong Jeon
- Department of Microbiology and Molecular Biology; Chungnam National University; Daejeon Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology; Chungnam National University; Daejeon Korea
| |
Collapse
|
8
|
Prendergast L, Müller S, Liu Y, Huang H, Dingli F, Loew D, Vassias I, Patel DJ, Sullivan KF, Almouzni G. The CENP-T/-W complex is a binding partner of the histone chaperone FACT. Genes Dev 2016; 30:1313-26. [PMID: 27284163 PMCID: PMC4911930 DOI: 10.1101/gad.275073.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/02/2016] [Indexed: 01/28/2023]
Abstract
Prendergast et al. identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone FACT, as CENP-W-binding partners through a proteomic screen. They developed a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres. The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.
Collapse
Affiliation(s)
- Lisa Prendergast
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Sebastian Müller
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Yiwei Liu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Florent Dingli
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL (Paris Sciences et Lettres) Research University Centre de Recherche, Paris 75005, France
| | - Damarys Loew
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL (Paris Sciences et Lettres) Research University Centre de Recherche, Paris 75005, France
| | - Isabelle Vassias
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Kevin F Sullivan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Geneviève Almouzni
- UMR3664, Centre National de la Recherche Scientifique, Institut Curie, PSL (Paris Sciences et Lettres) Research University, F-75005 Paris, France; UMR3664, Centre National de la Recherche Scientifique, University Pierre and Marie Curie Paris 06, Sorbonne Universités, F-75005 Paris, France
| |
Collapse
|