1
|
Francis M, Guo G, Kong B, Abramova EV, Cervelli JA, Gow AJ, Laskin JD, Laskin DL. Regulation of Lung Macrophage Activation and Oxidative Stress Following Ozone Exposure by Farnesoid X Receptor. Toxicol Sci 2021; 177:441-453. [PMID: 32984886 PMCID: PMC7548292 DOI: 10.1093/toxsci/kfaa111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammatory macrophages are known to contribute to ozone toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating bile acid and lipid homeostasis; it also exerts anti-inflammatory activity by suppressing macrophage NF-κB. Herein, we analyzed the role of FXR in regulating macrophage activation in the lung following ozone exposure. Treatment of wild-type (WT) mice with ozone (0.8 ppm, 3 h) resulted in increases in proinflammatory (F4/80+CD11c+CD11b+Ly6CHi) and anti-inflammatory (F4/80+CD11c+CD11b+Ly6CLo) macrophages in the lung. The accumulation of proinflammatory macrophages was increased in FXR-/- mice compared with WT mice; however, anti-inflammatory macrophage activation was blunted as reflected by reduced arginase and mannose receptor expression, a response correlated with decreased Nur77. This was associated with prolonged oxidative stress, as measured by 4-hydroxynonenal-modified proteins in the lung. Loss of FXR was accompanied by protracted increases in lung NF-κB activity and its target, inducible nitric oxide synthase in response to ozone. Levels of Tnf-α, Il-1β, Ccr2, Ccl2, Cx3cr1, and Cx3cl1 were also increased in lungs of FXR-/- relative to WT mice; conversely, genes regulating lipid homeostasis including Lxrα, Apoe, Vldlr, Abcg1, and Abca1 were downregulated, irrespective of ozone exposure. In FXR-/- mice, ozone caused an increase in total lung phospholipids, with no effect on SP-B or SP-D. Dyslipidemia was correlated with blunting of ozone-induced increases in positive end-expiratory pressure-dependent quasi-static pressure volume curves indicating a stiffer lung in FXR-/- mice. These findings identify FXR as a regulator of macrophage activation following ozone exposure suggesting that FXR ligands may be useful in mitigating inflammation and oxidative stress induced by pulmonary irritants.
Collapse
Affiliation(s)
- Mary Francis
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Grace Guo
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| |
Collapse
|
2
|
Tang B, Kang P, Zhu L, Xuan L, Wang H, Zhang H, Wang X, Xu J. Simvastatin protects heart function and myocardial energy metabolism in pulmonary arterial hypertension induced right heart failure. J Bioenerg Biomembr 2021; 53:1-12. [PMID: 33394312 DOI: 10.1007/s10863-020-09867-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023]
Abstract
The favorable effect of simvastatin on pulmonary arterial hypertension (PAH) has been well defined despite the unknown etiology of PAH. However, whether simvastatin exerts similar effects on PAH induced right heart failure (RHF) remains to be determined. We aimed to investigate the function of simvastatin in PAH induced RHF. Rats in the RHF and simvastatin groups were injected intraperitoneally with monocrotaline to establish PAH-induced RHF model. The expression of miR-21-5p in rat myocardium was detected and miR-21-5p expression was inhibited using antagomiRNA. The effect of simvastatin on hemodynamic indexes, ventricular remodeling of myocardial tissues, myocardial energy metabolism, and calmodulin was explored. Dual-luciferase reporter system was used to verify the binding relationship between miR-21-5p and Smad7. In addition, the regulatory role of simvastatin in Smad7, TGFBR1 and Smad2/3 was investigated. Simvastatin treatment improved hemodynamic condition, myocardial tissue remodeling, and myocardial energy metabolism, as well as increasing calmodulin expression in rats with PAH-induced RHF. After simvastatin treatment, the expression of miR-21-5p in myocardium of rats was decreased significantly. miR-21-5p targeted Smad7 and inhibited the expression of Smad7. Compared with RHF rats, the expressions of TGFBR1 and Smad2/3 in myocardium of simvastatin-treated rats were decreased significantly. Collectively, we provided evidence that simvastatin can protect ATPase activity and maintain myocardial ATP energy reserve through the miR-21-5p/Smad/TGF-β axis, thus ameliorating PAH induced RHF.
Collapse
Affiliation(s)
- Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Pinfang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Lei Zhu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Ling Xuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Hongju Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Heng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Xiaojing Wang
- Clinical and Basic Provincial Laboratory of Respiratory System Diseases of Anhui Province, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Jiali Xu
- Department of Paediatrics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Zagoskin P, Erlykina E. Bile Acids as a New Type of Steroid Hormones Regulating Nonspecific Energy Expenditure of the Body (Review). Sovrem Tekhnologii Med 2020; 12:114-127. [PMID: 34796012 PMCID: PMC8596256 DOI: 10.17691/stm2020.12.5.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The review is devoted to the systematization, classification, and generalization of the results of modern scientific research on the role of bile acids as a new class of steroid hormones. The paper presents the evidence for bile acid participation in the regulation of the body energy metabolism, body weight control, as well as the pathogenesis of obesity, diabetes mellitus, insulin resistance, and cardiovascular diseases. Particular attention is paid to the role of bile acids in the control of nonspecific energy expenditure of the body. The applied aspects of using the novel data about the membrane and intracellular receptors responsible for the development of hormonal regulatory effects of bile acids are analyzed. According to the authors, the modern data on the role of bile acids in the regulation of body functions allow a deeper understanding of the pathogenesis of body weight disorders and associated cardiovascular diseases. The review demonstrates promising directions in the search for specific methods of prevention and correction of these pathological conditions.
Collapse
Affiliation(s)
- P.P. Zagoskin
- Associate Professor, Department of Biochemistry named after G.Ya. Gorodisskaya; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.I. Erlykina
- Professor, Head of the Department of Biochemistry named after G.Ya. Gorodisskaya Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
4
|
Comeglio P, Filippi S, Sarchielli E, Morelli A, Cellai I, Corno C, Adorini L, Vannelli GB, Maggi M, Vignozzi L. Therapeutic effects of the selective farnesoid X receptor agonist obeticholic acid in a monocrotaline-induced pulmonary hypertension rat model. J Endocrinol Invest 2019; 42:951-965. [PMID: 30674010 DOI: 10.1007/s40618-019-1009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Activation of the farnesoid X receptor (FXR), a member of the nuclear receptor steroid superfamily, leads to anti-inflammatory and anti-fibrotic effects in several tissues, including the lung. We have recently demonstrated a protective effect of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) in rat models of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and bleomycin-induced pulmonary fibrosis. The aim of the present study was to investigate whether the positive effects of OCA treatment could be exerted also in established MCT-induced PAH, i.e., starting treatment 2 weeks after MCT administration. METHODS Rats with MCT-induced PAH were treated, 2 weeks after MCT administration, with OCA or tadalafil for two additional weeks. Pulmonary functional tests were performed at week 2 (before treatment) and four (end of treatment). At the same time points, lung morphological features and expression profile of genes related to smooth muscle relaxation/contraction and tissue remodeling were also assessed. RESULTS 2 weeks after MCT-induced injury, the treadmill resistance (a functional parameter related to pulmonary hypertension) was significantly decreased. At the same time point, we observed right ventricular hypertrophy and vascular remodeling, with upregulation of genes related to inflammation. At week 4, we observed a further worsening of the functional and morphological parameters, accompanied by dysregulation of inflammatory and extracellular matrix markers mRNA expression. Administration of OCA (3 or 10 mg/kg/day), starting 2 weeks after MCT-induced injury, significantly improved pulmonary function, effectively normalizing the exercise capacity. OCA also reverted most of the lung alterations, with a significant reduction of lung vascular wall thickness, right ventricular hypertrophy, and restoration of the local balance between relaxant and contractile pathways. Markers of remodeling pathways were also normalized by OCA treatment. Notably, results with OCA treatment were similar, or even superior, to those obtained with tadalafil, a recently approved treatment for pulmonary hypertension. CONCLUSIONS The results of this study demonstrate a significant therapeutic effect of OCA in established MCT-induced PAH, improving exercise capacity associated with reduction of right ventricular hypertrophy and lung vascular remodeling. Thus, OCA dosing in a therapeutic protocol restores the balance between relaxant and contractile pathways in the lung, promoting cardiopulmonary protective actions in MCT-induced PAH.
Collapse
Affiliation(s)
- P Comeglio
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - S Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of NEUROFARBA, University of Florence, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - A Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - I Cellai
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - C Corno
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
| | - L Adorini
- Intercept Pharmaceuticals, New York, NY, USA
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Rome, Italy
| | - L Vignozzi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Viale Pieraccini, 6, 50139, Florence, Italy.
- I.N.B.B. (Istituto Nazionale Biostrutture E Biosistemi), Rome, Italy.
| |
Collapse
|
5
|
Wu H, Liu G, He Y, Da J, Xie B. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol 2019; 858:172393. [PMID: 31085240 DOI: 10.1016/j.ejphar.2019.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major cardiac complications in diabetic patients and a major reason for the death of diabetic patients. Obeticholic acid (OCA) is a semi-synthetic bile acid analogue. The objective of the present study was to investigate the possible cardio-protective effect of OCA against DCM. db/db diabetic mice were given OCA with or without injection of LV-short hairpin farnesoid X receptor (shFXR), and general glucose and lipid metabolism, myocardial morphology and function, myocardial fibrosis, inflammation and oxidative stress were evaluated. We found that OCA significantly ameliorated metabolic dysfunctions. Moreover, OCA attenuated morphological injury of cardiac tissue, restored the abnormal changes of hemodynamic variables and echocardiographic parameters. The Sirius-Red staining of cardiac tissue and mRNA expression of fibrotic biomarkers, including connective tissue growth factor, osteopontin, Transforming growth factor-β1, atrial natriuretic peptide, Collagen Ⅰ, and Collagen Ⅲ were decreased by OCA. Systemic levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were reduced by OCA. Moreover, OCA decreased oxidant products and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and the expression and activities of antioxidant enzymes. Injection of LV-shFXR downregulated FXR expression and inhibited all these beneficial effects of OCA. FXR is major target that mediated that beneficial effect of OCA. In summary, FXR/Nrf2 signaling was involved in OCA-induced amelioration of metabolic disorder, oxidative stress, inflammation, fibrosis and myocardial dysfunction. Our findings provide new evidence for the interaction of FXR and Nrf2 signaling and novel option for the intervention of DCM.
Collapse
Affiliation(s)
- Hongkui Wu
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China.
| | - Gang Liu
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Yaoli He
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Jing Da
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| | - Bingqing Xie
- Department of Oldor Cardiovascular and Cerebrovascular Diseases, Baoji Central Hospital, Baoji, Shaanxi, 721008, China
| |
Collapse
|
6
|
Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017; 26:1215-1228. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review discusses the potential of FXR and TGR5 as therapeutic targets in the treatment of pulmonary disorders linked to metabolism and/or inflammation. Obeticholic acid (OCA) is the most clinically advanced bile acid-derived agonist for FXR-mediated anti-inflammatory and anti-fibrotic effects. It therefore represents an attractive pharmacological approach for the treatment of lung conditions characterized by vascular and endothelial dysfunctions. Expert opinion: Inflammation, vascular remodeling and fibrotic processes characterize the progression of pulmonary arterial hypertension (PAH) and idiopathic pulmonary fibrosis (IPF). These processes are only partially targeted by the available therapeutic options and still represent a relevant medical need. The results hereby summarized demonstrate OCA efficacy in preventing experimental lung disorders, i.e. monocrotaline-induced PAH and bleomycin-induced fibrosis, by abating proinflammatory and vascular remodeling progression. TGR5 is also expressed in the lung, and targeting the TGR5 pathway, using the TGR5 agonist INT-777 or the dual FXR/TGR5 agonist INT-767, could also contribute to the treatment of pulmonary disorders mediated by inflammation and fibrosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Annamaria Morelli
- b Department of Experimental and Clinical Medicine , University of Florence , Florence , Italy
| | | | - Mario Maggi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Linda Vignozzi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| |
Collapse
|
7
|
Chen X, Yan L, Guo Z, Chen Y, Li M, Huang C, Chen Z, Meng X. Chenodeoxycholic acid attenuates high-fat diet-induced obesity and hyperglycemia via the G protein-coupled bile acid receptor 1 and proliferator-activated receptor γ pathway. Exp Ther Med 2017; 14:5305-5312. [PMID: 29285057 PMCID: PMC5740767 DOI: 10.3892/etm.2017.5232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled bile acid receptor 1 (TGR5) serves a key function in regulating glycometabolism. TGR5 is highly expressed in the mitochondria of brown adipose tissue (BAT) and downregulates adenosine triphosphate synthesis via the bile acid-TGR5-cyclic adenosine monophosphate-2-iodothyronine deiodinase (D2)-triiodothyronine-uncoupling protein pathway, thus regulating energy homeostasis and reducing body weight. Chenodeoxycholic acid (CDCA), the primary bile acid, is a natural ligand of TGR5. The present study aimed to characterize the ability of CDCA to reduce high-fat diet-induced obesity and improve glucose tolerance. A mouse model of diet-induced obesity was constructed. The results demonstrated that a high-fat diet significantly increased the weight of mice after 10 weeks (P<0.05), but following the addition of CDCA and continued feeding for another 10 weeks, a decrease in weight was detected and no significant difference in final weight was observed between the high fat diet group treated with CDCA and the group fed a normal diet. Furthermore, CDCA treatment significantly increased glucose tolerance (P<0.001, P<0.01 and P<0.01 at 15, 40 and 60 min after glucose injection, respectively) and significantly decreased serum insulin levels compared with mice fed a high-fat diet alone. Staining of the liver with hematoxylin and eosin and oil red O revealed that the CDCA-treated group exhibited significantly lower fat accumulation in BAT and WAT compared with mice fed a high-fat diet alone (P<0.001). Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the expression of D2 activation system-related factors was significantly increased in BAT from mice treated with CDCA (P<0.001), confirming the role of TGR5 in modulating high-fat diet-induced obesity. In addition, CDCA inhibited adipocyte differentiation in 3T3-L1 cells and inhibited ligand-stimulated peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity. These results suggest that CDCA may prevent high-fat diet-induced obesity and hyperglycemia, and that these beneficial effects are mediated via the activation of TGR5 and inhibition of PPARγ transcriptional activity.
Collapse
Affiliation(s)
- Xiaosong Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Liu Yan
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhihui Guo
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ying Chen
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ming Li
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Chushan Huang
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhaohong Chen
- Department of Burns Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiyong Meng
- Department of Plastic Surgery, No. 421 Hospital of Chinese PLA, Guangzhou, Guangdong 510318, P.R. China
| |
Collapse
|
8
|
Gao J, Liu X, Wang B, Xu H, Xia Q, Lu T, Wang F. Farnesoid X receptor deletion improves cardiac function, structure and remodeling following myocardial infarction in mice. Mol Med Rep 2017; 16:673-679. [PMID: 28560412 PMCID: PMC5482148 DOI: 10.3892/mmr.2017.6643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
The farnesoid X receptor (FXR) is implicated in cholesterol and bile acid homeostasis; however, its role following myocardial infarction (MI) has yet to be elucidated. The aim of the present study was to investigate the effects of FXR knockout on left ventricular (LV) remodeling following MI. Coronary arteries of wild type (WT) and FXR‑/‑ mice were permanently occluded to cause MI, and serial echocardiographic and histological tests were conducted. At 4 weeks post‑MI, FXR‑/‑ mice exhibited significantly smaller infarct sizes (34.20±2.58 vs. 44.20±3.19%), improved ejection fraction (47.31±1.08 vs. 37.64±0.75%) and reduced LV chamber dilation compared with WT mice. LV remodeling was significant as early as 7 days post‑MI in FXR‑/‑ compared with WT mice. Histological features associated with enhanced long‑term remodeling and improved functionality, such as increased angiogenesis via detection of CD31 and reduced fibrosis, were observed in the FXR‑/‑ group. Myocyte apoptosis within the infarcted zones appeared significantly reduced by day 7 in FXR‑/‑ mice. In conclusion, the results of the present study suggested that FXR knockout may participate in the preservation of post‑MI cardiac functionality, via reducing fibrosis and chronic apoptosis, and ameliorating ventricular function.
Collapse
Affiliation(s)
- Jianshu Gao
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Haiyan Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qiang Xia
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Tianfei Lu
- Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
9
|
Ceulemans LJ, Verbeke L, Decuypere JP, Farré R, De Hertogh G, Lenaerts K, Jochmans I, Monbaliu D, Nevens F, Tack J, Laleman W, Pirenne J. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats. PLoS One 2017; 12:e0169331. [PMID: 28060943 PMCID: PMC5218501 DOI: 10.1371/journal.pone.0169331] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The farnesoid X receptor (FXR) is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI) is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA) could attenuate intestinal ischemia reperfusion injury. MATERIAL AND METHODS In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping), 3 conditions were tested (n = 16/group): laparotomy only (sham group); ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group); ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group). Vehicle or OCA (INT-747, 2*30mg/kg) was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP); histology (morphologic injury to villi/crypts and villus length); intestinal permeability (Ussing chamber); endotoxin translocation (Lipopolysaccharide assay); cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13); apoptosis (cleaved caspase-3); and autophagy (LC3, p62). RESULTS It was found that intestinal IRI was associated with high mortality (90%); loss of intestinal integrity (structurally and functionally); increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition. CONCLUSION Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier function and suppresses inflammation. These results turn FXR into a promising target for various conditions associated with intestinal ischemia.
Collapse
Affiliation(s)
- Laurens J Ceulemans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Len Verbeke
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jean-Paul Decuypere
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Ricard Farré
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell and Tissue Research, University Hospitals Leuven, & Department of Imaging and Pathology, KU Leuven, Belgium
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, the Netherlands
| | - Ina Jochmans
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Diethard Monbaliu
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| | - Frederik Nevens
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jan Tack
- Gastro-enterology, University Hospitals Leuven, & Translational Research in Gastro-Intestinal Disorders (TARGID), KU Leuven, Belgium
| | - Wim Laleman
- Liver and Biliopancreatic Disorders, University Hospitals Leuven, KU Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery, University Hospitals Leuven, & Department of Microbiology and Immunology, KU Leuven, Belgium
| |
Collapse
|
10
|
Vignozzi L, Morelli A, Cellai I, Filippi S, Comeglio P, Sarchielli E, Maneschi E, Vannelli GB, Adorini L, Maggi M. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension. J Steroid Biochem Mol Biol 2017; 165:277-292. [PMID: 27425465 DOI: 10.1016/j.jsbmb.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing right ventricular hypertrophy and significantly improving exercise capacity. Thus, OCA can restore the balance between relaxant and contractile pathways in the lung, promoting cardiopulmonary protective actions.
Collapse
Affiliation(s)
- Linda Vignozzi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ilaria Cellai
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neuroscience, Drug Research and Child Care, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Maneschi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | | | | | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy.
| |
Collapse
|