1
|
Yamaoki Y, Nagata T, Mashima T, Katahira M. Development of an RNA aptamer that acquires binding capacity against HIV-1 Tat protein via G-quadruplex formation in response to potassium ions. Chem Commun (Camb) 2017; 53:7056-7059. [PMID: 28620664 DOI: 10.1039/c7cc03312e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the development of K+-responsive RNA aptamers, we proposed a new general strategy that makes use of a G-quadruplex formation in response to K+. This is the first report of developing an RNA aptamer that demonstrates ON/OFF switching of its target-binding activity by sensing the addition/removal of K+.
Collapse
Affiliation(s)
- Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Tsukasa Mashima
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
2
|
Lim CS, Brown C. A new class of ribozyme from hepatitis B virus. FEBS J 2017; 284:1182-1183. [PMID: 28414880 DOI: 10.1111/febs.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this issue, Chakraborty and Ghosh present initial in vitro data indicating a 53-base part of the hepatitis B virus (HBV) epsilon region is a ribozyme with unusual properties. Self-cleavage first occurred at the HBV non-canonical polyadenylation signal UAUAAA and the "centre bulge" of the epsilon region, releasing a ribozyme. The released ribozyme then acted as a new class of trans-cleaving ribozyme cleaving other RNAs.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Christopher Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Amano R, Aoki K, Miyakawa S, Nakamura Y, Kozu T, Kawai G, Sakamoto T. NMR monitoring of the SELEX process to confirm enrichment of structured RNA. Sci Rep 2017; 7:283. [PMID: 28325909 PMCID: PMC5428055 DOI: 10.1038/s41598-017-00273-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/15/2017] [Indexed: 01/20/2023] Open
Abstract
RNA aptamers are RNA molecules that bind to a target molecule with high affinity and specificity using uniquely-folded tertiary structures. RNA aptamers are selected from an RNA pool typically comprising up to 1015 different sequences generated by iterative steps of selection and amplification known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Over several rounds of SELEX, the diversity of the RNA pool decreases and the aptamers are enriched. Hence, monitoring of the enrichment of these RNA pools is critical for the successful selection of aptamers, and several methods for monitoring them have been developed. In this study, we measured one-dimensional imino proton NMR spectra of RNA pools during SELEX. The spectrum of the initial RNA pool indicates that the RNAs adopt tertiary structures. The structural diversity of the RNA pools was shown to depend highly on the design of the primer-binding sequence. Furthermore, we demonstrate that enrichment of RNA aptamers can be monitored using NMR. The RNA pools can be recovered from the NMR tube after measurement of NMR spectra. We also can monitor target binding in the NMR tubes. Thus, we propose using NMR to monitor the enrichment of structured aptamers during the SELEX process.
Collapse
Affiliation(s)
- Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Kazuteru Aoki
- Ribomic Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Shin Miyakawa
- Ribomic Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Yoshikazu Nakamura
- Ribomic Inc., 3-16-13 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan.
| |
Collapse
|
4
|
Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. BIOCHEMISTRY (MOSCOW) 2017; 81:1602-1649. [PMID: 28260487 PMCID: PMC7087716 DOI: 10.1134/s0006297916130034] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G-quadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied non-canonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermodynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conformational features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4-specific small-molecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of G-quadruplexes in cells. Prominence is given to novel experimental techniques (single molecule manipulations, optical and magnetic tweezers, original chemical approaches, G4 detection in situ, in-cell NMR spectroscopy) that facilitate breakthroughs in the investigation of the structure and functions of G-quadruplexes.
Collapse
Affiliation(s)
- N G Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|