1
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Xu Q, Cao Z, Xu J, Dai M, Zhang B, Lai Q, Liu X. Effects and mechanisms of natural plant active compounds for the treatment of osteoclast-mediated bone destructive diseases. J Drug Target 2021; 30:394-412. [PMID: 34859718 DOI: 10.1080/1061186x.2021.2013488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bone-destructive diseases, caused by overdifferentiation of osteoclasts, reduce bone mass and quality, and disrupt bone microstructure, thereby causes osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis. Osteoclasts, the only multinucleated cells with bone resorption function, are derived from haematopoietic progenitors of the monocyte/macrophage lineage. The regulation of osteoclast differentiation is considered an effective target for the treatment of bone-destructive diseases. Natural plant-derived products have received increasing attention in recent years due to their good safety profile, the preference of natural compounds over synthetic drugs, and their potential therapeutic and preventive activity against osteoclast-mediated bone-destructive diseases. In this study, we reviewed the research progress of the potential antiosteoclast active compounds extracted from medicinal plants and their molecular mechanisms. Active compounds from natural plants that inhibit osteoclast differentiation and functions include flavonoids, terpenoids, quinones, glucosides, polyphenols, alkaloids, coumarins, lignans, and limonoids. They inhibit bone destruction by downregulating the expression of osteoclast-specific marker genes (CTSK, MMP-9, TRAP, OSCAR, DC-STAMP, V-ATPase d2, and integrin av3) and transcription factors (c-Fos, NFATc1, and c-Src), prevent the effects of local factors (ROS, LPS, and NO), and suppress the activation of various signalling pathways (MAPK, NF-κB, Akt, and Ca2+). Therefore, osteoclast-targeting natural products are of great value in the prevention and treatment of bone destructive diseases.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyou Cao
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - JiaQiang Xu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Dai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xuqiang Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Zhang Y, Ma C, Liu C, Wu W. NF-κB promotes osteoclast differentiation by overexpressing MITF via down regulating microRNA-1276 expression. Life Sci 2020; 258:118093. [PMID: 32673666 DOI: 10.1016/j.lfs.2020.118093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nuclear factor-kappa B (NF-κB) is an important nuclear transcription factor in cells, involving in a series of processes such as cell proliferation, apoptosis, and differentiation. In this study, we explored the specific mechanism of NF-κB on the differentiation of osteoclasts. METHODS MicroRNAs (miRNAs) expression microarray data GSE105027 related to osteoarthritis was obtained to screen out the differentially expressed miRNA. Phorbol-12-myristate-13-acetate (PMA) was used to induce THP-1 cells to differentiate into macrophages, followed by induction to osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). ELISA and RT-qPCR were conducted to examine IL-6 and IL-1β expression. The binding of NF-κB to the miR-1276 promoter region was demonstrated by ChIP assay, and targeting relationship between miR-1276 and MITF was verified by dual luciferase reporter assay. KK, iKBα, NF-kB, p-IKK, p-iKBα, p-NF-kB expression was analyzed by western blot. NF-κB and miR-1276 expression in osteoclasts was examined later. After gain- and less-of-function study, the effects on osteoclast differentiation were detected by TRAP-positive osteoclasts, TRAP activity, TRAP-5b content, F-Actin expression, as well as osteoclast differentiation marker genes expression. RESULTS NF-κB was activated in osteoclasts, and down-regulation of NF-κB inhibited osteoclast differentiation. Next, miR-1276 was downregulated in osteoclasts after differentiation from monocytes. Meanwhile, NF-κB decreased the expression of miR-1276 by binding to the miR-1276 promoter, thereby elevating MITF expression, thereby promoting osteoclast differentiation. CONCLUSION In summary, NF-κB promoted osteoclast differentiation through downregulating miR-1276 to upregulate MITF.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Chengyuan Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Chunshui Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
4
|
Quach D, Parameswaran N, McCabe L, Britton RA. Characterizing how probiotic Lactobacillus reuteri 6475 and lactobacillic acid mediate suppression of osteoclast differentiation. Bone Rep 2019; 11:100227. [PMID: 31763377 PMCID: PMC6864341 DOI: 10.1016/j.bonr.2019.100227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a disease that impacts over 200 million people worldwide. The probiotic bacterium Lactobacillus reuteri (L. reuteri) has been shown to prevent bone loss during estrogen deficiency. Lactobacillic acid is important for L. reuteri-induced suppression of in vitro osteoclastogenesis. Osteoclastogenesis was inhibited by L. reuteri and lactobacillic acid via GPR120 signaling.
Osteoporosis is a disease that impacts over 200 million people worldwide. Taking into consideration the side effects stemming from medications used to treat this illness, investigators have increased their efforts to develop novel therapeutics for osteoporosis. In a previous study, we demonstrated that ovariectomy-induced bone loss in mice was prevented by treatment with the probiotic bacterium Lactobacillus reuteri 6475 (L. reuteri), an effect that correlated with reduced osteoclastogenesis in the bone marrow of L. reuteri treated mice. We also demonstrated that L. reuteri directly inhibited osteoclastogenesis in vitro. To better understand how L. reuteri impacts osteoclast formation, we used additional in vitro analyses to identify that conditioned supernatant from L. reuteri inhibited osteoclastogenesis at the intermediate stage of fused polykaryons. To elucidate the effect of L. reuteri treatment on host cell physiology, we performed RNAseq at multiple time points during in vitro osteoclastogenesis and established that L. reuteri downregulated several KEGG pathways including osteoclast differentiation as well as TNF-α, NF-κB, and MAP kinase signaling. These results were consistent with Western Blot data demonstrating that NF-κB and p38 activation were decreased by L. reuteri treatment. We further identified that lactobacillic acid (LA), a cyclopropane fatty acid produced by L. reuteri, contributed significantly to the suppression of osteoclastogenesis. Additionally, we demonstrated that L. reuteri is signaling through the long chain fatty acid receptor, GPR120, to impact osteoclastogenesis. Overall, these studies provide both bacterial and host mechanisms by which L. reuteri impacts osteoclastogenesis and suggest that long chain fatty acid receptors could be targets for preventing osteoclastogenesis.
Collapse
Affiliation(s)
- Darin Quach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Laura McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Robert A. Britton
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
5
|
Chen R, Ren L, Cai Q, Zou Y, Fu Q, Ma Y. The role of epigenetic modifications in the osteogenic differentiation of adipose-derived stem cells. Connect Tissue Res 2019; 60:507-520. [PMID: 31203665 DOI: 10.1080/03008207.2019.1593395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the last decade, stem cells have drawn extensive attention from scientists due to their full potential in tissue engineering, gene therapy, and cell therapy. Adipose-derived stem cells (ADSCs), which represent one type of mesenchymal stem cell (MSC), hold great promise in bone tissue engineering due to their painless collection procedure, their ability to self-renew and their multi-lineage differentiation properties. Major epigenetic mechanisms, which involve DNA methylation, histone modifications and RNA interference (RNAi), are known to represent one of the determining factors of ADSC fate and differentiation. Understanding the epigenetic modifications of ADSCs may provide a clue for improving stem cell therapy in bone repair and regeneration. The aim of this review is to present the recent advances in understanding the epigenetic mechanisms that facilitate ADSC differentiation into an osteogenic lineage, in addition to the characteristics of the main epigenetic modifications.
Collapse
Affiliation(s)
- Ruixin Chen
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Lin Ren
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Qingwei Cai
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Yang Zou
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Qiang Fu
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| | - Yuanyuan Ma
- Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University , Guangzhou , China.,Guangdong Provincial Key Laboratory of Stomatology , Guangzhou , China
| |
Collapse
|
6
|
Wang HT, Li J, Ma ST, Feng WY, Wang Q, Zhou HY, Zhao JM, Yao J. A study on the prevention and treatment of murine calvarial inflammatory osteolysis induced by ultra-high-molecular-weight polyethylene particles with neomangiferin. Exp Ther Med 2018; 16:3889-3896. [PMID: 30402145 PMCID: PMC6200963 DOI: 10.3892/etm.2018.6725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to examine the influence of neomangiferin on murine calvarial inflammatory osteolysis induced by ultra-high-molecular-weight polyethylene (UHMWPE) particles. Eight-week-old male C57BL/J6 mice served as an inflammatory osteolysis model, in which UHMWPE particles were implanted into the calvarial subperiosteal space. The mice were randomly distributed into four groups and treated with different interventions; namely, a sham group [phosphate-buffered saline (PBS) injection and no UHMWPE particles], model group (PBS injection and implantation of UHMWPE particles), low-dose neomangiferin group (UHMWPE particles +2.5 mg/kg neomangiferin), and high-dose neomangiferin group (UHMWPE particles +5 mg/kg neomangiferin). Following 3 weeks of feeding according to the above regimens, celiac artery blood samples were collected for an enzyme-linked immunosorbent assay (ELISA) to determine the expression of receptor activator of nuclear factor-κB ligand (RANKL), osteoclast-related receptor (OSCAR), cross-linked C-telopeptide of type I collagen (CTX-1); osteoprotegerin (OPG), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. Subsequently, the mice were sacrificed by cervical dislocation following ether-inhalation anesthesia, and the skull was separated for osteolysis analysis by micro-computed tomography (micro-CT). Following hematoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining was performed to observe the dissolution and destruction of the skull. The micro-CT results suggested that neomangiferin significantly inhibited the murine calvarial osteolysis and bone resorption induced by UHMWPE particles. In addition, the ELISA results showed that neomangiferin decreased the expression levels of osteoclast markers RANKL, OSCAR, CTX-1, TNF-α and IL-1β. By contrast, the levels of OPG increased with the neomangiferin dose. Histopathological examination revealed that the TRAP-positive cell count was significantly reduced in the neomangiferin-treated animals compared with that in the positive control group, and the degree of bone resorption was also markedly reduced. Neomangiferin was found to have significant anti-inflammatory effects and to inhibit osteoclastogenesis. Therefore, it has the potential to prevent the aseptic loosening of a prosthesis following artificial joint replacement.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia Li
- Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Ting Ma
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Yu Feng
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Wang
- Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong-Yan Zhou
- Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Min Zhao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Yao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Orthopedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
7
|
Deng S, Cheng J, Zhao J, Yao F, Xu J. Natural Compounds for the Treatment of Psoriatic Arthritis: A Proposal Based on Multi-Targeted Osteoclastic Regulation and on a Preclinical Study. JMIR Res Protoc 2017; 6:e132. [PMID: 28698171 PMCID: PMC5527251 DOI: 10.2196/resprot.7636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Psoriatic arthritis (PsA) is a chronic inflammatory arthritis affecting approximately 2% to 3% of the population globally, and is characterized by both peripheral articular manifestations and axial skeletal involvement. Conventional therapies for PsA have not been fully satisfactory, though natural products (NPs) have been shown to be highly effective and represent important treatment options for psoriasis. PsA is a multigenic autoimmune disease with both environmental and genetic factors contributing to its pathogenesis. Accordingly, it is likely that the use of natural compounds with a multi-targeted approach will enable us to develop better therapies for PsA and related disorders. OBJECTIVE PsA, either on joint damage or on bone erosion, has been shown to respond to anti-psoriatic pharmacotherapy (APP), APP-like NPs, and their natural compounds. This study aims to uncover specific natural compounds for improved PsA remedies. Specifically, by targeting bone erosion caused by increased osteoclastic bone resorption, we aim to predict the key signaling pathways affected by natural compounds. Further, the study will explore their anti-arthritis effects using an in silico, in vitro, and in vivo approach. Following the signaling pathway prediction, a preclinical efficacy study on animal models will be undertaken. Collectively, this work will discover lead compounds with improved therapeutic effects on PsA. METHODS We hypothesize that 9 potential APP-like NPs will have therapeutic effects on arthritis via the modulation of osteoclast bone resorption and signaling pathways. For in silico identification, the Latin name of each NP will be identified using the Encyclopedia of Traditional Chinese Medicine (Encyclopedia of TCM). The biological targets of NPs will be predicted or screened using the Herbal Ingredients' Targets (HIT) database. With the designed search terms, DrugBank will be used to further filter the above biological targets. Protein ANnotation THrough Evolutionary Relationship (PANTHER) will be used to predict the pathways of the natural compound sources. Subsequently, an in vitro sample preparation including extraction, fractionation, isolation, purification, and bioassays with high-speed counter-current chromatography-high-performance liquid chromatography-diode array detection (HSCCC-HPLC-DAD) will be carried out for each identified natural source. In vitro investigations into the effect of NPs on osteoclast signaling pathways will be performed. The experimental methods include cell viability assays, osteoclastogenesis and resorption pit assays, quantitative reverse transcription polymerase chain reaction (RT-PCR), western blot, and luciferase reporter gene assays. Finally, an in vivo preclinical efficacy on a collagen-induced arthritis rat model will be carried out using a treatment group (n=10), a control group (n=10), and a non-arthritis group (n=10). Main outcome measure assessments during intervention include daily macroscopic scores and a digital calipers measurement. Post-treatment tissue measurements will be analyzed by serological testing, radiographic imaging, and histopathological assessment. RESULTS Studies are currently underway to evaluate the in silico data and the in vitro effects of compounds on osteoclastogenesis and bone resorption. The preclinical study is expected to start a year following completion of the in silico analysis. CONCLUSIONS The in silico rapid approach is proposed as a more general method for adding value to the results of a systematic review of NPs. More importantly, the proposed study builds on a multi-targeted approach for the identification of natural compounds for future drug discovery. This innovative approach is likely to be more precise, efficient, and compatible to identify the novel natural compounds for effective treatment of PsA.
Collapse
Affiliation(s)
- Shiqiang Deng
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jianwen Cheng
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Felix Yao
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jiake Xu
- Molecular Laboratory, School of Biomedical Sciences, The University of Western Australia, Perth, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China.,Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Jin C, Zhang P, Zhang M, Zhang X, Lv L, Liu H, Liu Y, Zhou Y. Inhibition of SLC7A11 by Sulfasalazine Enhances Osteogenic Differentiation of Mesenchymal Stem Cells by Modulating BMP2/4 Expression and Suppresses Bone Loss in Ovariectomized Mice. J Bone Miner Res 2017; 32:508-521. [PMID: 27696501 DOI: 10.1002/jbmr.3009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022]
Abstract
An imbalance in osteogenesis and adipogenesis is a crucial pathological factor in the development of osteoporosis. Many attempts have been made to develop drugs to prevent and treat this disease. In the present study, we investigated the phenomenon whereby downregulation of SLC7A11 significantly enhanced the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, and promoted the bone formation in vivo. Sulfasalazine (SAS), an inhibitor of SLC7A11, increased the osteogenic potential effectively. Mechanistically, inhibition of SLC7A11 by SAS treatment or knockdown of SLC7A11 increased BMP2/4 expression dramatically. In addition, we detected increased Slc7a11 expression in bone marrow MSCs of ovariectomized (OVX) mice. Remarkably, SAS treatment attenuated bone loss in ovariectomized mice. Together, our data suggested that SAS could be used to treat osteoporosis by enhancing osteogenic differentiation of MSCs. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Jin C, Zheng Y, Huang Y, Liu Y, Jia L, Zhou Y. Long non-coding RNAMIATknockdown promotes osteogenic differentiation of human adipose-derived stem cells. Cell Biol Int 2016; 41:33-41. [PMID: 27797128 DOI: 10.1002/cbin.10697] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Yunfei Zheng
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Yiping Huang
- Department of Orthodontics; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Yunsong Liu
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery; Peking University School and Hospital of Stomatology; Beijing 100081 China
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Yongsheng Zhou
- Department of Prosthodontics; Peking University School and Hospital of Stomatology; Beijing 100081 China
- National Engineering Laboratory for Digital and Material Technology of Stomatology; Beijing Key Laboratory of Digital Stomatology; Beijing 100081 China
| |
Collapse
|