1
|
Ida T, Matsui K, Nagata S, Nakamachi T, Shiimura Y, Sato T, Kojima M. Discovery of Feeding Regulatory Peptides and The Importance of Peptide Discovery Research. Kurume Med J 2025:MS7134001. [PMID: 40254448 DOI: 10.2739/kurumemedj.ms7134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Bioactive peptides consist of multiple linked amino acids that are secreted from cells and act on specific receptors in order to transmit information from one cell to another. Through signal transduction, bioactive peptides regulate various physiological functions in the body, and the discovery of new bioactive peptides is therefore likely to lead to the development of various diagnostic and therapeutic agents. In this article, we have focused on the bioactive peptides that are known as feeding regulatory peptides. They are among the bioactive peptides discovered as ligands for G protein-coupled receptors (GPCRs), and we have reviewed their diverse functions. In addition, the status of structural analysis of GPCRs, which is necessary in the drug discovery process, and research on orphan GPCRs, for which new ligands are expected to be discovered in the future, is introduced to systematize modern peptide research and discuss future developments in bioactive peptide research.
Collapse
Affiliation(s)
- Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University
| | - Sayaka Nagata
- Department of Food Science and Technology, Faculty of Health and Nutrition, Minami Kyushu University
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama
| | - Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University
- Department of Cell Biology, Graduate School of Medicine, Kyoto University
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University
| |
Collapse
|
2
|
Botticelli L, Micioni Di Bonaventura E, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Bonifazi A, Cifani C, Micioni Di Bonaventura MV. The neuromedin U system: Pharmacological implications for the treatment of obesity and binge eating behavior. Pharmacol Res 2023; 195:106875. [PMID: 37517560 DOI: 10.1016/j.phrs.2023.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Neuromedin U (NMU) is a bioactive peptide produced in the gut and in the brain, with a role in multiple physiological processes. NMU acts by binding and activating two G protein coupled receptors (GPCR), the NMU receptor 1 (NMU-R1), which is predominantly expressed in the periphery, and the NMU receptor 2 (NMU-R2), mainly expressed in the central nervous system (CNS). In the brain, NMU and NMU-R2 are consistently present in the hypothalamus, commonly recognized as the main "feeding center". Considering its distribution pattern, NMU revealed to be an important neuropeptide involved in the regulation of food intake, with a powerful anorexigenic ability. This has been observed through direct administration of NMU and by studies using genetically modified animals, which revealed an obesity phenotype when the NMU gene is deleted. Thus, the development of NMU analogs or NMU-R2 agonists might represent a promising pharmacological strategy to treat obese individuals. Furthermore, NMU has been demonstrated to influence the non-homeostatic aspect of food intake, playing a potential role in binge eating behavior. This review aims to discuss and summarize the current literature linking the NMU system with obesity and binge eating behavior, focusing on the influence of NMU on food intake and the neuronal mechanisms underlying its anti-obesity properties. Pharmacological strategies to improve the pharmacokinetic profile of NMU will also be reported.
Collapse
Affiliation(s)
- Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri, Camerino 62032, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, Camerino 62032, Italy.
| | | |
Collapse
|
3
|
Li X, Hua J, Wang S, Hu Z, Wen A, Yang B. Genes and Signaling Pathways Involved in the Regulation of Selenium-Enriched Yeast on Liver Metabolism and Health of Broiler (Gallus gallus). Biol Trace Elem Res 2023; 201:387-402. [PMID: 35143018 DOI: 10.1007/s12011-022-03150-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Selenium-enriched yeast (SeY) plays an important role in the liver health and metabolism of the broiler. However, the mechanism by which it regulates liver metabolism and the health of broilers is largely unknown. Therefore, this study was conducted to elucidate the key genes and signaling pathways involved in regulating SeY in liver metabolism and bird's health. Thus, the mRNA expression microarray, GSE25151, was downloaded from Gene Expression Omnibus (GEO) database. GSE25151 consists of liver samples from SeY-treated and the control broilers. Six hundred four differentially expressed genes (DEGs) were identified in livers between SeY-treated and control. Gene ontology (GO) enrichment analysis indicated that those DEGs are mainly involved in metabolism-related biological processes, such as biological regulation, molecular processes, responses to stimuli, cell communication and proliferation, and growth. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the DEGs mainly enriched in metabolism-related signaling pathways, including PI3K, Akt, Wnt, calcium, IGF1 receptor, and MAPK signaling pathways. Moreover, many genes, such as NMUR1, NMU, and GPRC6A, might contribute to the regulation of SeY to broiler liver metabolism and health. In conclusion, the current study enhances our understanding of the regulation of SeY in liver metabolism and health of the birds and will assist studies of the molecular mechanisms of SeY regulation in chicken liver.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongze Hu
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230039, China.
- Longyan University & Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, 233100, China.
| |
Collapse
|
4
|
Misawa T, Wagner M, Koyasu S. ILC2s and Adipose Tissue Homeostasis: Progress to Date and the Road Ahead. Front Immunol 2022; 13:876029. [PMID: 35784368 PMCID: PMC9243262 DOI: 10.3389/fimmu.2022.876029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) were initially identified as a new type of lymphocytes that produce vigorous amounts of type 2 cytokines in adipose tissue. Subsequent studies revealed that ILC2s are present not only in adipose tissue but also in various other tissues such as lung and skin. ILC2s are generally recognized as tissue-resident immune cells that regulate tissue homeostasis. ILC2s express receptors for various humoral factors and thus can change their functions or distribution depending on the environment and circumstances. In this review, we will outline our recent understanding of ILC2 biology and discuss future directions for ILC2 research, particularly in adipose tissue and metabolic homeostasis.
Collapse
Affiliation(s)
- Takuma Misawa
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- *Correspondence: Shigeo Koyasu,
| |
Collapse
|
5
|
Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M, Worthington JJ. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacol Rep 2022; 74:637-653. [PMID: 35653031 DOI: 10.1007/s43440-022-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade. METHODS Studies were carried out on adult, male Sprague-Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression. RESULTS Acute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum. CONCLUSIONS The pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.
Collapse
Affiliation(s)
- Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Alessandra Della Vecchia
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, 67, Via Roma, 56100, Pisa, Italy
| | - Aniela Grajoszek
- Department for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department of Psychiatry and Psychotherapy, Faculty of Medical Sciences in Katowice, Clinic of Psychiatric Rehabilitation, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
6
|
Yu X, Li W. Comparative insights into the integration mechanism of neuropeptides to starvation and temperature stress. Gen Comp Endocrinol 2022; 316:113945. [PMID: 34826429 DOI: 10.1016/j.ygcen.2021.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Stress is known as the process of biological responses evoked by internal or external stimuli. The ability to sense, integrate and respond to stress signals is a requisite for life. Temperature and photoperiod are very important environmental factors for animals. In addition, stress signals can also be inputted from peripheral tissue, such as starvation and inflammation. Through afferent pathways, stress signals input to the central nervous system (CNS), where various signals will integrate, and the integrated information will transmit to the peripheral effectors. As the regulators of neural activity, neuropeptides play important roles in these processes. The present review summarizes recent findings about the integration mechanism of stress signals in the CNS, emphasizing on the role of neuropeptides.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12:727008. [PMID: 34489979 PMCID: PMC8416625 DOI: 10.3389/fimmu.2021.727008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) are the innate counterparts of Th2 cells and are critically involved in the maintenance of homeostasis in a variety of tissues. Instead of expressing specific antigen receptors, ILC2s respond to external stimuli such as alarmins released from damage. These cells help control the delicate balance of inflammation in adipose tissue, which is a determinant of metabolic outcome. ILC2s play a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) through their protective effects on tissue homeostasis. A variety of crosstalk takes place between resident adipose cells and ILC2s, with each interaction playing a key role in controlling this balance. ILC2 effector function is associated with increased browning of adipose tissue and an anti-inflammatory immune profile. Trafficking and maintenance of ILC2 populations are critical for tissue homeostasis. The metabolic environment and energy source significantly affect the number and function of ILC2s in addition to affecting their interactions with resident cell types. How ILC2s react to changes in the metabolic environment is a clear determinant of the severity of disease. Treating sources of metabolic instability via critical immune cells provides a clear avenue for modulation of systemic homeostasis and new treatments of T2DM.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: An Updated Overview of Their Functions. Front Endocrinol (Lausanne) 2021; 12:713961. [PMID: 34276571 PMCID: PMC8283259 DOI: 10.3389/fendo.2021.713961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting via NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Collapse
|
9
|
Yuan Y, Wang H, He J, Sun H, Zhu D, Bi Y. Peripheral Administration of NMU Promotes White Adipose Tissue Beiging and Improves Glucose Tolerance. Int J Endocrinol 2021; 2021:6142096. [PMID: 34422045 PMCID: PMC8373479 DOI: 10.1155/2021/6142096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Targeting white adipose tissue (WAT) beiging has been proposed as an effective way to increase thermogenesis and improve glucose metabolism. Neuromedin U (NMU) is a neuropeptide that could increase energy expenditure, while its effects on WAT beiging and glucose homeostasis remain to be investigated. METHODS Male C57BL/6 mice were fed with high fat diet (HFD) to induce obesity and hyperglycemia and then treated with chronic subcutaneous injection of NMU. Body weight and food intake were recorded daily. After 14 days of injection, intraperitoneal glucose tolerance tests and 18F-fluorodeoxyglucose micro-positron emission tomography/computed tomography (18F-FDG micro-PET/CT) scans were conducted. Subcutaneous WAT (sWAT) and interscapular brown adipose tissue were collected for the evaluation of adipocyte size, expression of uncoupling protein 1 (Ucp1), and other thermogenic-related genes. Stromal vascular fraction of subcutaneous WAT was extracted for the measurement of type 2 innate lymphocytes (ILC2s) proportions. RESULTS Glucose tolerance was markedly improved by peripherally administered NMU. Micro-PET/CT suggested that NMU promoted WAT beiging, which was further confirmed by haematoxylin and eosin (H&E) staining and immunohistochemistry. In diet-induced-obese (DIO) mice, NMU activated thermogenic-related genes in WAT. In addition, NMU stimulated ILC2s in the stromal vascular fraction of WAT. CONCLUSION Taken together, our study indicates that peripheral administration of NMU is a potential therapeutic strategy for the promotion of WAT beiging and the improvement of impaired glucose tolerance.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jielei He
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haixiang Sun
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Tanaka Y, Taguchi S, Maruyama K, Mori K, Miyazato M, Kangawa K, Murakami N, Nakahara K. Comparison of physiological functions between neuromedin U-related peptide and neuromedin S-related peptide in the rat central nervous system. Biochem Biophys Res Commun 2020; 534:653-658. [PMID: 33228964 DOI: 10.1016/j.bbrc.2020.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023]
Abstract
Two novel peptides, neuromedin U precursor-related peptide (NURP) and neuromedin S precursor-related peptide (NSRP), are produced from neuromedin U (NMU) and neuromedin S (NMS) precursors, respectively, as these precursors have multiple consensus sequences for proteolytic processing. Our group has shown previously that one of these two novel peptides, NURP, stimulates body temperature and locomotor activity, but not food intake. However, the physiological function of the other peptide, NSRP, has remained unclear. Therefore, the aim of this study was to characterize differences in the regions of the rat brain targeted by the NMU/NMS peptide family, including NURP and NSRP, and their physiological functions. First, we explored the regions of c-Fos expression after intracerebroventricular (i.c.v.) injection of NURP and NSRP and found that these were fewer than after i.c.v. injection of NMU and NMS in the hypothalamus, possibly because NURP and NSRP cannot activate NMU/NMS receptors. In the ventral subiculum, which is one region of the hippocampus, c-Fos expression was evident only after i.c.v. injection of NURP. We also examined the effects of NSRP on food intake, body temperature and locomotor activity. Like NURP, NSRP increased both body temperature and locomotor activity, but not food intake, indicating that NSRP is also a functional peptide. However, these effects of NSRP were distinctly weaker than those of NURP. These findings suggest differences in the affinity of NURP and/or NSRP for specific receptors, or in their respective biological activities.
Collapse
Affiliation(s)
- Yukie Tanaka
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Shimon Taguchi
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Keisuke Maruyama
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan.
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Noboru Murakami
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
11
|
Nakahara K, Maruyama K, Ensho T, Mori K, Miyazato M, Kangawa K, Uemura R, Sakoda H, Nakazato M, Murakami N. Neuromedin U suppresses prolactin secretion via dopamine neurons of the arcuate nucleus. Biochem Biophys Res Commun 2019; 521:521-526. [PMID: 31677791 DOI: 10.1016/j.bbrc.2019.10.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022]
Abstract
Neuromedin U (NMU) has a precursor that contains one additional peptide consisting of 33 or 36 amino acid residues. Recently, we identified this second peptide from rat brain and designated it neuromedin U precursor-related peptide (NURP), showing it to stimulate prolactin release from the pituitary when injected via the intracerebroventricular (icv) route. Here, we examined whether NMU, like NURP, also stimulates prolactin release. Unlike NURP, icv injection of NMU significantly decreased the secretion of prolactin from the pituitary. This suppression of prolactin release by NMU was observed in hyper-prolactin states such as lactation, stress, pseudopregnancy, domperidone (dopamine antagonist) administration, and icv injection of NURP. Immunohistochemical analysis revealed that icv injection of NMU induced cFos expression in dopaminergic neurons of the arcuate nucleus, but not the substantia nigra. Mice with double knockout of NMU and neuromedin S (NMS), the latter also binding to NMU receptors, showed a significant increase of the plasma prolactin level after domperidone treatment relative to wild-type mice. These results suggest that NMU and NURP may play important reciprocal roles in physiological prolactin secretion.
Collapse
Affiliation(s)
- Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Keisuke Maruyama
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan
| | - Ryoko Uemura
- Department of Veterinary Domestic Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
12
|
Ensho T, Maruyama K, Qattali AW, Yasuda M, Uemura R, Murakami N, Nakahara K. Comparison of glucose tolerance between wild-type mice and mice with double knockout of neuromedin U and neuromedin S. J Vet Med Sci 2019; 81:1305-1312. [PMID: 31341114 PMCID: PMC6785621 DOI: 10.1292/jvms.19-0320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recently, it has been proposed that neuromedin U (NMU) is "decretin", which suppresses insulin secretion from the pancreas in vitro. Here we examined the possible involvement of NMU in insulin secretion in vivo by comparing the plasma glucose and insulin levels of wild-type mice with those of double knockout (D-KO) of the NMU and neuromedin S (NMS) genes, as NMS binds to the neuromedin U receptor. If NMU is, in fact, "decretin", which inhibits insulin secretion from the pancreas, then NMU-deficient mice might result in higher plasma insulin levels than is the case in wild-type mice, or injection of NMU lead to suppression of plasma insulin level. In this study, we found that the fasting plasma level of insulin was not increased in D-KO mice. Glucose tolerance tests revealed no significant difference in plasma insulin levels between wild-type mice and D-KO mice under non-fasting conditions. After peripheral injection of NMU, plasma glucose and insulin levels did not show any significant changes in either wild-type or D-KO mice. Glucose tolerance testing after 3 weeks of high fat feeding revealed no significant difference in plasma insulin levels during 60 min after glucose injection between wild-type and D-KO mice. These results suggest that even if NMU is a decretin candidate, its physiological involvement in suppression of insulin secretion may be very minor in vivo.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Keisuke Maruyama
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Abdul Wahid Qattali
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Ryoko Uemura
- Department of Veterinary Domestic animal Hygienics, Faculty of Agriculture, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| |
Collapse
|
13
|
Schroeder M, Jakovcevski M, Polacheck T, Drori Y, Ben-Dor S, Röh S, Chen A. Sex dependent impact of gestational stress on predisposition to eating disorders and metabolic disease. Mol Metab 2018; 17:1-16. [PMID: 30174229 PMCID: PMC6197785 DOI: 10.1016/j.molmet.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Vulnerability to eating disorders (EDs) is broadly assumed to be associated with early life stress. However, a careful examination of the literature shows that susceptibility to EDs may depend on the type, severity and timing of the stressor and the sex of the individual. We aimed at exploring the link between chronic prenatal stress and predisposition to EDs and metabolic disease. METHODS We used a chronic variable stress protocol during gestation to explore the metabolic response of male and female offspring to food restriction (FR), activity-based anorexia (ABA), binge eating (BE) and exposure to high fat (HF) diet. RESULTS Contrary to controls, prenatally stressed (PNS) female offspring showed resistance to ABA and BE and displayed a lower metabolic rate leading to hyperadiposity and obesity on HF diet. Male PNS offspring showed healthy responses to FR and ABA, increased propensity to binge and improved coping with HF compared to controls. We found that long-lasting abnormal responses to metabolic challenge are linked to fetal programming and adult hypothalamic dysregulation in PNS females, resulting from sexually dimorphic adaptations in placental methylation and gene expression. CONCLUSIONS Our results show that maternal stress may have variable and even opposing effects on ED risk, depending on the ED and the sex of the offspring.
Collapse
Affiliation(s)
- Mariana Schroeder
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Tamar Polacheck
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yonat Drori
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany.
| |
Collapse
|
14
|
Wan Y, Zhang J, Fang C, Chen J, Li J, Li J, Wu C, Wang Y. Characterization of neuromedin U (NMU), neuromedin S (NMS) and their receptors (NMUR1, NMUR2) in chickens. Peptides 2018; 101:69-81. [PMID: 29288685 DOI: 10.1016/j.peptides.2017.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
Neuromedin U (NMU) and its structurally-related peptide, neuromedin S (NMS), are reported to regulate many physiological processes and their actions are mediated by two NMU receptors (NMUR1, NMUR2) in mammals. However, the information regarding NMU, NMS, and their receptors is limited in birds. In this study, we examined the structure, functionality, and expression of NMS, NMU, NMUR1 and NMUR2 in chickens. The results showed that: 1) chicken (c-) NMU cDNA encodes a 181-amino acid precursor, which may generate two forms of NMU peptide with 9 (cNMU-9) and 25 amino acids (cNMU-25), respectively. 2) Interestingly, two cNMS transcripts encoding two cNMS precursors of different lengths were identified from chicken pituitary, and both cNMS precursors may produce a mature cNMS peptide of 9 amino acids (cNMS-9). 3) cNMU-9, cNMU-25 and cNMS-9 could activate cNMUR1 expressed in HEK293 cells potently, as monitored by three cell-based luciferase reporter systems, indicating that cNMUR1 can act as a receptor common for cNMU and cNMS peptides, whereas cNMUR2 could be potently activated by cNMS-9, but not by cNMU-9/cNMU-25. 4) cNMU and cNMUR1 are widely expressed in chicken tissues with abundant expression noted in the gastrointestinal tract, as detected by quantitative real-time PCR, whereas cNMUR2 expression is mainly restricted to the brain and anterior pituitary, and cNMS is widely expressed in chicken tissues. Collectively, our data helps to elucidate the physiological roles of NMU/NMS peptides in birds and reveal the functional conservation and changes of NMU/NMS-NMUR axis across vertebrates.
Collapse
Affiliation(s)
- Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chao Fang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Junan Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jing Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Chenlei Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
15
|
Ensho T, Nakahara K, Suzuki Y, Murakami N. Neuropeptide S increases motor activity and thermogenesis in the rat through sympathetic activation. Neuropeptides 2017; 65:21-27. [PMID: 28433253 DOI: 10.1016/j.npep.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/01/2022]
Abstract
The central role of neuropeptide S (NPS), identified as the endogenous ligand for GPR154, now named neuropeptide S receptor (NPSR), has not yet been fully clarified. We examined the central role of NPS for body temperature, energy expenditure, locomotor activity and adrenal hormone secretion in rats. Intracerebroventricular (icv) injection of NPS increased body temperature in a dose-dependent manner. Energy consumption and locomotor activity were also significantly increased by icv injection of NPS. In addition, icv injection of NPS increased the peripheral blood concentration of adrenalin and corticosterone. Pretreatment with the β1- and β2-adrenergic receptor blocker timolol inhibited the NPS-induced increase of body temperature. The expression of both NPS mRNA in the brainstem and NPSR mRNA in the hypothalamus showed a nocturnal rhythm with a peak occurring during the first half of the dark period. To examine whether the endogenous NPS is involved in regulation of body temperature, NPSR antagonist SHA68 was administered one hour after darkness. SHA68 attenuated the nocturnal rise of body temperature. These results suggest that NPS contributes to the regulation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan.
| | - Yoshihiro Suzuki
- Laboratory of Animal Health Science, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan
| |
Collapse
|
16
|
Ensho T, Maruyama K, Mori K, Miyazato M, Kangawa K, Nakahara K, Murakami N. Neuromedin U precursor-related peptide (NURP) exerts neuromedin U-like sympathetic nerve action in the rat. Biochem Biophys Res Commun 2017; 492:412-418. [PMID: 28843854 DOI: 10.1016/j.bbrc.2017.08.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
Abstract
It has been suggested that novel peptide that is produced from the neuromedin U (NMU) precursor may exist, as this precursor contains multiple consensus sequences for proteolytic processing. Recently, we identified two mature novel peptides comprising 33 and 36 residues in the rat brain, which were designated neuromedin U precursor-related peptide (NURP) 33 and 36. In the present study, we compared the roles of NURP33 and 36 with that of NMU, as neither activates the NMU receptors. Immunoreactivity for NMU and NURPs was widely present in the central nervous system and showed a similar distribution. Intracerebroventricular (icv) injection of NURP33 in rats increased locomotor activity, energy expenditure, heart rate and back surface temperature (BS-T), similarly to NMU or NURP36. NMU treatment reduced food intake, but NURP33 did not. Pretreatment with the β3 blocker, SR59230A, and the cyclooxygenase blocker, indomethacin, inhibited the NURP33- or NMU-induced increase of BS-T. In addition, icv injection of NURP33 or NMU increased the expression of mRNA for cyclooxygenase 2 in the hypothalamus and for uncoupling protein 1 in the brown adipose tissue. These results suggest that although NURP33 and 36 do not activate the NMU receptors, they might exert NMU-like sympathetic nerve action in the brain.
Collapse
Affiliation(s)
- Takuya Ensho
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Keisuke Maruyama
- Basic and Clinical Research Project for CNS Drugs, Medical Innovation Center, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Mori
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Noboru Murakami
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|