1
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Bründl M, Pellikan S, Stary-Weinzinger A. Simulating PIP 2-Induced Gating Transitions in Kir6.2 Channels. Front Mol Biosci 2021; 8:711975. [PMID: 34447786 PMCID: PMC8384051 DOI: 10.3389/fmolb.2021.711975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels consist of an inwardly rectifying K+ channel (Kir6.2) pore, to which four ATP-sensitive sulfonylurea receptor (SUR) domains are attached, thereby coupling K+ permeation directly to the metabolic state of the cell. Dysfunction is linked to neonatal diabetes and other diseases. K+ flux through these channels is controlled by conformational changes in the helix bundle region, which acts as a physical barrier for K+ permeation. In addition, the G-loop, located in the cytoplasmic domain, and the selectivity filter might contribute to gating, as suggested by different disease-causing mutations. Gating of Kir channels is regulated by different ligands, like Gβγ, H+, Na+, adenosine nucleotides, and the signaling lipid phosphatidyl-inositol 4,5-bisphosphate (PIP2), which is an essential activator for all eukaryotic Kir family members. Although molecular determinants of PIP2 activation of KATP channels have been investigated in functional studies, structural information of the binding site is still lacking as PIP2 could not be resolved in Kir6.2 cryo-EM structures. In this study, we used Molecular Dynamics (MD) simulations to examine the dynamics of residues associated with gating in Kir6.2. By combining this structural information with functional data, we investigated the mechanism underlying Kir6.2 channel regulation by PIP2.
Collapse
Affiliation(s)
| | | | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Lacin E, Aryal P, Glaaser IW, Bodhinathan K, Tsai E, Marsh N, Tucker SJ, Sansom MSP, Slesinger PA. Dynamic role of the tether helix in PIP 2-dependent gating of a G protein-gated potassium channel. J Gen Physiol 2017; 149:799-811. [PMID: 28720589 PMCID: PMC5560777 DOI: 10.1085/jgp.201711801] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023] Open
Abstract
G protein–gated inwardly rectifying potassium (GIRK) channels are activated by the phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2). Using functional and computational experiments, Lacin et al. reveal that PIP2 interacts with the tether helix of the neuronal GIRK channel in a dynamic way. G protein–gated inwardly rectifying potassium (GIRK) channels control neuronal excitability in the brain and are implicated in several different neurological diseases. The anionic phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) is an essential cofactor for GIRK channel gating, but the precise mechanism by which PIP2 opens GIRK channels remains poorly understood. Previous structural studies have revealed several highly conserved, positively charged residues in the “tether helix” (C-linker) that interact with the negatively charged PIP2. However, these crystal structures of neuronal GIRK channels in complex with PIP2 provide only snapshots of PIP2’s interaction with the channel and thus lack details about the gating transitions triggered by PIP2 binding. Here, our functional studies reveal that one of these conserved basic residues in GIRK2, Lys200 (6′K), supports a complex and dynamic interaction with PIP2. When Lys200 is mutated to an uncharged amino acid, it activates the channel by enhancing the interaction with PIP2. Atomistic molecular dynamic simulations of neuronal GIRK2 with the same 6′ substitution reveal an open GIRK2 channel with PIP2 molecules adopting novel positions. This dynamic interaction with PIP2 may explain the intrinsic low open probability of GIRK channels and the mechanism underlying activation by G protein Gβγ subunits and ethanol.
Collapse
Affiliation(s)
- Emre Lacin
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Prafulla Aryal
- Department of Biochemistry, University of Oxford, Oxford, England, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK
| | - Ian W Glaaser
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Eric Tsai
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nidaa Marsh
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephen J Tucker
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK.,Department of Physics, University of Oxford, Oxford, England, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, England, UK.,OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, England, UK
| | - Paul A Slesinger
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|