1
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; 16:12977-13011. [PMID: 39422615 PMCID: PMC11552638 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M. Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
En A, Takemoto K, Yamakami Y, Nakabayashi K, Fujii M. Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization. FEBS J 2024; 291:2155-2171. [PMID: 38462947 DOI: 10.1111/febs.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Mammalian somatic cells undergo terminal proliferation arrest after a limited number of cell divisions, a phenomenon termed cellular senescence. However, cells acquire the ability to proliferate infinitely (cellular immortalization) through multiple genetic alterations. Inactivation of tumor suppressor genes such as p53, RB and p16 is important for cellular immortalization, although additional molecular alterations are required for cellular immortalization to occur. Here, we aimed to gain insights into these molecular alterations. Given that cellular immortalization is the escape of cells from cellular senescence, genes that regulate cellular senescence are likely to be involved in cellular immortalization. Because senescent cells show altered heterochromatin organization, we investigated the implications of lamin A/C, lamin B1 and lamin B receptor (LBR), which regulate heterochromatin organization, in cellular immortalization. We employed human immortalized cell lines, KMST-6 and SUSM-1, and found that expression of LBR was upregulated upon cellular immortalization and downregulated upon cellular senescence. In addition, knockdown of LBR induced cellular senescence with altered chromatin configuration. Additionally, enforced expression of LBR increased cell proliferation likely through suppression of genome instability in human primary fibroblasts that expressed the simian virus 40 large T antigen (TAg), which inactivates p53 and RB. Furthermore, expression of TAg or knockdown of p53 led to upregulated LBR expression. These observations suggested that expression of LBR might be upregulated to suppress genome instability in TAg-expressing cells, and, consequently, its upregulated expression assisted the proliferation of TAg-expressing cells (i.e. p53/RB-defective cells). Our findings suggest a crucial role for LBR in the process of cellular immortalization.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kentaro Takemoto
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Yoshimi Yamakami
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
4
|
Redundant and Specific Roles of A-Type Lamins and Lamin B Receptor in Herpes Simplex Virus 1 Infection. J Virol 2022; 96:e0142922. [PMID: 36448808 PMCID: PMC9769381 DOI: 10.1128/jvi.01429-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We investigated whether A-type lamins (lamin A/C) and lamin B receptor (LBR) are redundant during herpes simplex virus 1 (HSV-1) infection in HeLa cells expressing lamin A/C and LBR. Lamin A/C and LBR double knockout (KO) in HSV-1-infected HeLa cells significantly impaired expressions of HSV-1 early and late genes, maturation of replication compartments, marginalization of host chromatin to the nuclear periphery, enlargement of host cell nuclei, and viral DNA replication. Phenotypes of HSV-1-infected HeLa cells were restored by the ectopic expression of lamin A/C or LBR in lamin A/C and LBR double KO cells. Of note, lamin A/C single KO, but not LBR single KO, promoted the aberrant accumulation of virus particles outside the inner nuclear membrane (INM) and viral replication, as well as decreasing the frequency of virus particles inside the INM without affecting viral gene expression and DNA replication, time-spatial organization of replication compartments and host chromatin, and nuclear enlargement. These results indicated that lamin A/C and LBR had redundant and specific roles during HSV-1 infection. Thus, lamin A/C and LBR redundantly regulated the dynamics of the nuclear architecture, including the time-spatial organization of replication compartments and host chromatin, as well as promoting nuclear enlargement for efficient HSV-1 gene expression and DNA replication. In contrast, lamin A/C inhibited HSV-1 nuclear export through the INM during viral nuclear egress, which is a unique property of lamin A/C. IMPORTANCE This study demonstrated that lamin A/C and LBR had redundant functions associated with HSV-1 gene expression and DNA replication by regulating the dynamics of the nuclear architecture during HSV-1 infection. This is the first report to demonstrate the redundant roles of lamin A/C and LBR as well as the involvement of LBR in the regulation of these viral and cellular features in HSV-1-infected cells. These findings provide evidence for the specific property of lamin A/C to inhibit HSV-1 nuclear egress, which has long been considered but without direct proof.
Collapse
|
5
|
Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist? Ageing Res Rev 2021; 71:101458. [PMID: 34500043 DOI: 10.1016/j.arr.2021.101458] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest. This definition stems from the original observation concerning limited cell division potential of human fibroblasts in vitro. At present, the process of cell senescence is attributed also to cancer cells and to non-proliferating post-mitotic cells. Many cellular signaling pathways and specific and unspecific markers contribute to the complex, dynamic and heterogeneous phenotype of senescent cells. Considering the diversity of cells that can undergo senescence upon different inducers and variety of mechanisms involved in the execution of this process, we ask if there is a common signature of cell senescence. It seems that cell cycle arrest in G0, G1 or G2 is indispensable for cell senescence; however, to ensure irreversibility of divisions, the exit from the cell cycle to the state, which we call a GS (Gero Stage), is necessary. The DNA damage, changes in nuclear architecture and chromatin rearrangement are involved in signaling pathways leading to altered gene transcription and secretion of SASP components. Thus, nuclear changes and SASP are vital features of cell senescence that, together with temporal arrest in the cell cycle (G1 or/and G2), which may be followed by polyploidisation/depolyploidisation or exit from the cell cycle leading to permanent proliferation arrest (GS), define the signature of cellular senescence.
Collapse
|
6
|
En A, Takauji Y, Ayusawa D, Fujii M. The role of lamin B receptor in the regulation of senescence-associated secretory phenotype (SASP). Exp Cell Res 2020; 390:111927. [PMID: 32126237 DOI: 10.1016/j.yexcr.2020.111927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Cellular senescence is a phenomenon of irreversible growth arrest of mammalian somatic cells. Senescent cells increase the production of secretory proteins such as inflammatory cytokines, a phenomenon termed senescence-associated secretory phenotype (SASP). SASP is known to have profound effects on organismal health and aging; however, the molecular mechanisms of SASP are not precisely understood. In our previous studies, we have shown that senescent cells show decreased function of lamin B receptor (LBR), a nuclear membrane protein that regulates heterochromatin organization. Here we examined the implication of LBR in the regulation of SASP because senescent cells show altered heterochromatin organization, which would affect gene expression. We found that knock-down of LBR up-regulated the expression of the SASP factors such as IL-6, IL-8, and MMP1 in HeLa cells, even though cellular senescence was not induced by LBR knock-down. Conversely, enforced expression of LBR suppressed their up-regulated expression in senescent cells induced by excess thymidine. Further, our gene expression profile analysis also showed that many secretory proteins were up-regulated by LBR knock-down. We then analyzed the regulatory mechanisms of the expression of SASP factors by LBR, and found that the promoters of these SASP factors associated with LBR in normally growing cells, but dissociated from it in senescent cells. Additionally, we found that enforced expression of LBR decreased the generation of cytoplasmic DNA, which could be involved in SASP, in senescent cells. These findings suggested that LBR would play crucial roles in the regulation of SASP.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yuki Takauji
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| |
Collapse
|
7
|
Wei W, Hu Z, Jia Y, Gu T, Zhao W, Ji S. Characterization of lamin B receptor of Sf9 cells and its fate during Autographa californica nucleopolyhedrovirus infection. Cytotechnology 2020; 72:315-325. [PMID: 32246222 DOI: 10.1007/s10616-020-00380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/17/2020] [Indexed: 11/29/2022] Open
Abstract
Baculovirus nucleocapsids egress from the nuclear membrane during infection. However, details of alternation of nuclear membrane structure during baculovirus egress are unknown. In this study, we examined the changes of lamin B receptor (LBR), a main inner nuclear membrane component, during Autographa californica nucleopolyhedrovirus (AcMNPV) infection. Firstly, the open reading frame (Orf) of Sf9 lbr was cloned by reverse transcription PCR, and the distribution of LBR in Sf9 cells were observed by fusing LBR with the red fluorescence protein mcherry. Besides, the amount of endogenous LBR during AcMNPV infection was detected by western blotting. Moreover, the distribution of LBR after AcMNPV infection was observed under the confocal fluorescence microscopy. Furthermore, the effects of protein kinase C (PKC) inhibitor on stability of LBR and release of budded virus (BVs) were determined. The results showed that Sf9 lbr contains an Orf of 2040 nucleotides (NTs), which encodes a predicted protein of 679 amino acids (AAs). Fluorescence microscopy showed that LBR is localized to the nuclear membrane. Western blotting result showed that the amount of endogenous LBR is significantly reduced after AcMNPV infection. Transfection and infection assay demonstrated that the fluorescence of LBR nearly completely disappeared after viral infection. PKC inhibitor can suppress the degradation of LBR induced by AcMNPV, resulting in the reduction of viral titer of progeny viruses. The electron microscopy analysis demonstrated that PKC inhibitor did not influence virion entry, uncoating, and assembly, but may partially protect the nuclear membrane from disruption by AcMNPV. Taken together, AcMNPV infection can distort the expression of LBR, which may promote the egress of nucleocapsids.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China. .,Henan International Joint Laboratory for Nuclear Protein in Gene Regulation, Henan University, Kaifeng, 475004, Henan, China. .,Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Zichao Hu
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - TingXuan Gu
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Wei Zhao
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction and Institute of Biomedical Informatics, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
8
|
En A, Takauji Y, Miki K, Ayusawa D, Fujii M. Lamin B receptor plays a key role in cellular senescence induced by inhibition of the proteasome. FEBS Open Bio 2020; 10:237-250. [PMID: 31825172 PMCID: PMC6996348 DOI: 10.1002/2211-5463.12775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/07/2019] [Accepted: 12/09/2019] [Indexed: 12/04/2022] Open
Abstract
Cellular senescence is a terminal growth arrest phenomenon in mammalian cells. Coordinated regulation of protein synthesis and degradation is required to maintain protein homeostasis in cells; however, senescent cells exhibit decreased activity of the proteasome, a major cellular proteolytic machinery, with an accumulation of proteins. Indeed, we showed that MG132, a proteasome inhibitor, induced cellular senescence through an accumulation of proteins in human cells. We then investigated the mechanisms of cellular senescence induced by protein accumulation by treating cells with MG132. We found that lamin B receptor (LBR), a nuclear membrane protein that regulates heterochromatin organization, was mislocalized and down-regulated in cells on treatment with MG132. Importantly, enforced expression of LBR suppressed cellular senescence induced by MG132. We also showed that LBR was involved in the regulation of chromatin organization in senescent cells, and that endoplasmic reticulum stress and autophagy were likely to be involved in the mislocalization and down-regulation of LBR. These findings indicate that decreased LBR function was responsible for the induction of cellular senescence by MG132, and thus suggest that protein accumulation caused by inhibition of the proteasome induced cellular senescence probably through chromatin dysregulation in human cells.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Yuki Takauji
- Graduate School of NanobioscienceYokohama City UniversityJapan
- Ichiban Life CorporationYokohamaJapan
| | - Kensuke Miki
- Graduate School of NanobioscienceYokohama City UniversityJapan
- Ichiban Life CorporationYokohamaJapan
| | - Dai Ayusawa
- Graduate School of NanobioscienceYokohama City UniversityJapan
- Ichiban Life CorporationYokohamaJapan
| | - Michihiko Fujii
- Graduate School of NanobioscienceYokohama City UniversityJapan
| |
Collapse
|
9
|
Arai R, En A, Takauji Y, Maki K, Miki K, Fujii M, Ayusawa D. Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells. Mech Ageing Dev 2019; 178:25-32. [PMID: 30615890 DOI: 10.1016/j.mad.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a phenomenon of irreversible growth arrest in mammalian somatic cells in culture. Various stresses induce cellular senescence and indeed, we have found that excess thymidine effectively induces cellular senescence in human cells. Further, many reports indicate the implication of chromatin proteins in cellular senescence. Here we analysed the role of lamin B receptor (LBR), a nuclear envelope protein that regulates heterochromatin organization, in cellular senescence induced by excess thymidine. We then found that the LBR protein was down-regulated and showed aberrant localization in cells upon induction of cellular senescence by excess thymidine. Additionally, we also found that knock-down of LBR facilitated the induction of cellular senescence by excess thymidine in cancerous HeLa cells, and importantly, it induced cellular senescence in normal human diploid fibroblast TIG-7 cells. These results suggested that decreased LBR function is involved in the induction of cellular senescence in human cells.
Collapse
Affiliation(s)
- Rumi Arai
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yuki Takauji
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Keisuke Maki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan.
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan; Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama, 231-0048, Japan
| |
Collapse
|
10
|
Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, Maari C, Pestano LA, Dalby CM, Jackson AL, Rubin P, Marshall WS. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol 2018; 139:1073-1081. [PMID: 30472058 DOI: 10.1016/j.jid.2018.11.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 12/29/2022]
Abstract
MicroRNA-29 (miR-29) negatively regulates fibrosis and is downregulated in multiple fibrotic organs and tissues, including in the skin. miR-29 mimics prevent pulmonary fibrosis in mouse models but have not previously been tested in the skin. This study aimed to identify pharmacodynamic biomarkers of miR-29 in mouse skin, to translate those biomarkers across multiple species, and to assess the pharmacodynamic activity of a miR-29b mimic (remlarsen) in a clinical trial. miR-29 biomarkers were selected based on gene function and mRNA expression using quantitative reverse transcriptase polymerase chain reaction. Those biomarkers comprised multiple collagens and other miR-29 direct and indirect targets and were conserved across species; remlarsen regulated their expression in mouse, rat, and rabbit skin wounds and in human skin fibroblasts in culture, while a miR-29 inhibitor reciprocally regulated their expression. Biomarker expression translated to clinical proof-of-mechanism; in a double-blinded, placebo-randomized, within-subject controlled clinical trial of single and multiple ascending doses of remlarsen in normal healthy volunteers, remlarsen repressed collagen expression and the development of fibroplasia in incisional skin wounds. These results suggest that remlarsen may be an effective therapeutic to prevent formation of a fibrotic scar (hypertrophic scar or keloid) or to prevent cutaneous fibrosis, such as scleroderma.
Collapse
Affiliation(s)
| | - Joseph Piper
- miRagen Therapeutics, Inc, Boulder, Colorado, USA
| | | | - Anita G Seto
- miRagen Therapeutics, Inc, Boulder, Colorado, USA
| | - Seok Jong Hong
- Division of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Division of Surgery, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | - Paul Rubin
- miRagen Therapeutics, Inc, Boulder, Colorado, USA
| | | |
Collapse
|
11
|
Golubtsova NN, Filippov FN, Gunin AG. Age-Related Changes in the Expression of Lamin B Receptors in Human Dermal Fibroblasts. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nikolakaki E, Mylonis I, Giannakouros T. Lamin B Receptor: Interplay between Structure, Function and Localization. Cells 2017; 6:cells6030028. [PMID: 28858257 PMCID: PMC5617974 DOI: 10.3390/cells6030028] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Lamin B receptor (LBR) is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Panepistimiou 3 BIOPOLIS, Larissa 41500, Greece.
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of Chemistry, Aristotelian University, Thessaloniki 54124, Greece.
| |
Collapse
|