1
|
Li R, Zhang J, Wang Q, Cheng M, Lin B. TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway. J Neuroinflammation 2022; 19:257. [PMID: 36241997 PMCID: PMC9563125 DOI: 10.1186/s12974-022-02619-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Microglia, the innate immune cells in the central nervous system, play an essential role in brain homeostasis, neuroinflammation and brain infections. Dysregulated microglia, on the other hand, are associated with neurodegenerative diseases, yet the mechanisms underlying pro-inflammatory gene expression in microglia are incompletely understood. Methods We investigated the role of the actin-associated protein tropomyosin 1 (TPM1) in regulating pro-inflammatory phenotype of microglia in the retina by using a combination of cell culture, immunocytochemistry, Western blot, qPCR, TUNEL, RNA sequencing and electroretinogram analysis. TREM2−/− mice were used to investigate whether TPM1 regulated pro-inflammatory responses downstream of TREM2. To conditionally deplete microglia, we backcrossed CX3CR1CreER mice with Rosa26iDTR mice to generate CX3CR1CreER:Rosa26iDTR mice. Results We revealed a vital role for TPM1 in regulating pro-inflammatory phenotype of microglia. We found that TPM1 drove LPS-induced inflammation and neuronal death in the retina via the PKA/CREB pathway. TPM1 knockdown ameliorated LPS-induced inflammation in WT retinas yet exaggerated the inflammation in TREM2−/− retinas. RNA sequencing revealed that genes associated with M1 microglia and A1 astrocytes were significantly downregulated in LPS-treated WT retinas but upregulated in LPS-treated TREM2−/− retinas after TPM1 knockdown. Mechanistically, we demonstrated that CREB activated by TPM1 knockdown mediated anti-inflammatory genes in LPS-treated WT retinas but pro-inflammatory genes in LPS-treated TREM2−/− retinas, suggesting a novel role for TREM2 as a brake on TPM1-mediated inflammation. Furthermore, we identified that TPM1 regulated inflammation downstream of TREM2 and in a microglia-dependent manner. Conclusions We demonstrate that TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway. Our findings suggest that TPM1 could be a potential target for therapeutic intervention in brain diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02619-3.
Collapse
Affiliation(s)
- Rong Li
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong.
| | - Jing Zhang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qiong Wang
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong
| | - Meng Cheng
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong. .,Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Lee GL, Liao TL, Wu JY, Wu KK, Kuo CC. Restoration of 5-methoxytryptophan protects against atherosclerotic chondrogenesis and calcification in ApoE -/- mice fed high fat diet. J Biomed Sci 2021; 28:74. [PMID: 34749728 PMCID: PMC8573875 DOI: 10.1186/s12929-021-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background Toll-like receptor-2 (TLR2) promotes vascular smooth muscle cell (VSMC) transdifferentiation to chondrocytes and calcification in a p38 MAPK-dependent manner. Vascular 5-methoxytryptophan (5-MTP) is a newly identified factor with anti-inflammatory actions. As 5-MTP targets p38 MAPK for its actions, we postulated that 5-MTP protects against vascular chondrogenesis and calcification. Methods High-fat diet-induced advanced atherosclerosis in mice were performed to investigate the effect of 5-MTP on atherosclerotic lesions and calcification. VSMCs were used to determine the role of 5-MTP in VSMC chondrogenic differentiation and calcification. Alizarin red S and Alcian blue staining were used to measure VSMC calcification and chondrogenic differentiation, respectively. Results 5-MTP was detected in aortic tissues of ApoE−/− mice fed control chow. It was reduced in ApoE−/− mice fed high-fat diet (HFD), but was restored in ApoE−/−Tlr2−/− mice, suggesting that HFD reduces vascular 5-MTP production via TLR2. Intraperitoneal injection of 5-MTP or its analog into ApoE−/− mice fed HFD reduced aortic atherosclerotic lesions and calcification which was accompanied by reduction of chondrogenesis and calcium deposition. Pam3CSK4 (Pam3), ligand of TLR2, induced SMC phenotypic switch to chondrocytes. Pretreatment with 5-MTP preserved SMC contractile proteins and blocked Pam3-induced chondrocyte differentiation and calcification. 5-MTP inhibited HFD-induced p38 MAPK activation in vivo and Pam3-induced p38 MAPK activation in SMCs. 5-MTP suppressed HFD-induced CREB activation in aortic tissues and Pam3-induced CREB and NF-κB activation in SMCs. Conclusions These findings suggest that 5-MTP is a vascular arsenal against atherosclerosis and calcification by inhibiting TLR2–mediated SMC phenotypic switch to chondrocytes and the consequent calcification. 5-MTP exerts these effects by blocking p38 MAPK activation and inhibiting CREB and NF-κB transactivation activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00771-1.
Collapse
Affiliation(s)
- Guan-Lin Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Tsai-Lien Liao
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Jing-Yiing Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan. .,College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan. .,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Moser B, Poetsch F, Estepa M, Luong TTD, Pieske B, Lang F, Alesutan I, Voelkl J. Increased β-adrenergic stimulation augments vascular smooth muscle cell calcification via PKA/CREB signalling. Pflugers Arch 2021; 473:1899-1910. [PMID: 34564739 PMCID: PMC8599266 DOI: 10.1007/s00424-021-02621-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and β-adrenergic receptors. The present study explored the effects of β2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. β2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of β2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.
Collapse
Affiliation(s)
- Barbara Moser
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Florian Poetsch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Application of the MISTEACHING(S) disease susceptibility framework to Actinobacillus pleuropneumoniae to identify research gaps: an exemplar of a veterinary pathogen. Anim Health Res Rev 2021; 22:120-135. [PMID: 34275511 DOI: 10.1017/s1466252321000074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, the MISTEACHING (microbiome, immunity, sex, temperature, environment, age, chance, history, inoculum, nutrition, genetics) framework to describe the outcome of host-pathogen interaction, has been applied to human pathogens. Here, we show, using Actinobacillus pleuropneumoniae as an exemplar, that the MISTEACHING framework can be applied to a strict veterinary pathogen, enabling the identification of major research gaps, the formulation of hypotheses whose study will lead to a greater understanding of pathogenic mechanisms, and/or improved prevention/therapeutic measures. We also suggest that the MISTEACHING framework should be extended with the inclusion of a 'strain' category, to become MISTEACHINGS. We conclude that the MISTEACHINGS framework can be applied to veterinary pathogens, whether they be bacteria, fungi, viruses, or parasites, and hope to stimulate others to use it to identify research gaps and to formulate hypotheses worthy of study with their own pathogens.
Collapse
|
5
|
Kuehling J, Eisenhofer K, Lechner M, Becker S, Willems H, Reiner G. The effects of boar on susceptibility to swine inflammation and necrosis syndrome in piglets. Porcine Health Manag 2021; 7:15. [PMID: 33509289 PMCID: PMC7842003 DOI: 10.1186/s40813-021-00194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammation and necrosis can appear in pigs in several parts of the body simultaneously. The signs can affect newborns, suckling piglets and older pigs, and recent studies suggest that the syndrome is primarily endogenous. Inflammation and necrosis indicate impaired animal welfare, and thus should be controlled in pig production. This can be achieved by improving husbandry conditions. However, the variation in signs also appears to have a genetic component. The aim of the present study was therefore to test the effects of different boars from the Duroc and Pietrain breeds on the prevalence of swine inflammation and necrosis syndrome in their offspring. For this purpose, 646 suckling pigs from 39 sows (two herds) and 19 boars were made available. On the third day of life, the piglets were examined for clinical signs of inflammation and necrosis at tail base, tail tip, ears, face, teats, navel and claws. For the evaluation, we included the boar within the breed and the breed as fixed effects and the sow within the herd as random effects. More than 70% of the piglets were affected at the tail base, ears, coronary bands and heels. Bristle loss, swelling, redness, venous congestion and claw wall bleeding occurred most frequently. Exudation and necrosis affected fewer piglets. None of the piglets was completely free from signs of SINS. Offspring from Duroc boars had significantly lower SINS scores (4.87 ± 0.44) than offspring from Pietrain boars (10.13 ± 0.12). Within the Pietrain breed, significant effects of the boar were observed on inflammation and necrosis levels. Under the present study conditions, using Duroc boars instead of Pietrain boars resulted in a 59% reduction in the SINS scores of their offspring. The SINS score in the offspring of the most favourable Pietrain boar was almost 40% lower than that of offspring in the least favourable. These findings confirm considerable genetic effects on the outcome of SINS under a given husbandry. Further studies are necessary to characterise the genetic effects in detail and to make them useful to combat the syndrome.
Collapse
Affiliation(s)
- Josef Kuehling
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, 35392, Giessen, Germany
| | - Kathrin Eisenhofer
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, 35392, Giessen, Germany
| | | | - Sabrina Becker
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, 35392, Giessen, Germany
| | - Hermann Willems
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, 35392, Giessen, Germany
| | - Gerald Reiner
- Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, 35392, Giessen, Germany.
| |
Collapse
|
6
|
Truong V, Anand-Srivastava MB, Srivastava AK. Role of cyclic AMP response element binding protein (CREB) in angiotensin II-induced responses in vascular smooth muscle cells. Can J Physiol Pharmacol 2020; 99:30-35. [PMID: 33091310 DOI: 10.1139/cjpp-2020-0531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclic AMP response element (CRE) binding protein (CREB) is a nuclear transcription factor that regulates the transcription of several genes containing the CRE sites on their promoters. CREB is activated by phosphorylation on a key serine residue, Ser311, in response to a wide variety of extracellular stimuli including angiotensin II (Ang II). Ang II is an important vasoactive peptide and mitogen for vascular smooth muscle cells (VSMC) that in addition to regulating the contractile response in VSMC also plays an important role in phenotypic switch of VSMC from contractile to a synthetic state. The synthetic VSMC are known to exhibit proliferative and migratory properties due to hyperactivation of Ang II-induced signaling events. Ang II has been shown to induce CREB phosphorylation/activation and transcription of genes implicated in proliferation, growth, and migration. Here, we have highlighted some key studies that have demonstrated an important role of CREB in Ang II-mediated gene transcription, proliferation, hypertrophy, and migration of VSMC.
Collapse
Affiliation(s)
- Vanessa Truong
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, H3C 3J7, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
7
|
Nietfeld F, Höltig D, Willems H, Valentin-Weigand P, Wurmser C, Waldmann KH, Fries R, Reiner G. Candidate genes and gene markers for the resistance to porcine pleuropneumonia. Mamm Genome 2020; 31:54-67. [PMID: 31960078 PMCID: PMC7060169 DOI: 10.1007/s00335-019-09825-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022]
Abstract
Actinobacillus (A.) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies have discovered multiple QTL that may explain up to 30% of phenotypic variance. Based on these findings, the aim of the present study was to use genomic sequencing to identify genetic markers for resistance to pleuropneumonia in a segregating commercial German Landrace line. 163 pigs were infected with A. pleuropneumoniae Serotype 7 through a standardized aerosol infection method. Phenotypes were accurately defined on a clinical, pathological and microbiological basis. The 58 pigs with the most extreme phenotypes were genotyped by sequencing (next-generation sequencing). SNPs were used in a genome-wide association study. The study identified genome-wide associated SNPs on three chromosomes, two of which were chromosomes of QTL which had been mapped in a recent experiment. Each variant explained up to 20% of the total phenotypic variance. Combined, the three variants explained 52.8% of the variance. The SNPs are located in genes involved in the pathomechanism of pleuropneumonia. This study confirms the genetic background for the host's resistance to pleuropneumonia and indicates a potential role of three candidates on SSC2, SSC12 and SSC15. Favorable gene variants are segregating in commercial populations. Further work is needed to verify the results in a controlled study and to identify the functional QTN.
Collapse
Affiliation(s)
- Florian Nietfeld
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Doris Höltig
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hermann Willems
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christine Wurmser
- Chair of Animal Breeding, Technical University of Munich, Freising, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technical University of Munich, Freising, Germany
| | - Gerald Reiner
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
8
|
Vanadium Derivative Exposure Promotes Functional Alterations of VSMCs and Consequent Atherosclerosis via ROS/p38/NF-κB-Mediated IL-6 Production. Int J Mol Sci 2019; 20:ijms20246115. [PMID: 31817202 PMCID: PMC6940940 DOI: 10.3390/ijms20246115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
Vanadium is a transition metal widely distributed in the Earth’s crust, and is a major contaminant in fossil fuels. Its pathological effect and regulation in atherosclerosis remain unclear. We found that intranasal administration of the vanadium derivative NaVO3 significantly increased plasma and urinary vanadium levels and induced arterial lipid accumulation and atherosclerotic lesions in apolipoprotein E-deficient knockout mice (ApoE−/−) murine aorta compared to those in vehicle-exposed mice. This was accompanied by an increase in plasma reactive oxygen species (ROS) and interleukin 6 (IL-6) levels and a decrease in the vascular smooth muscle cell (VSMC) differentiation marker protein SM22α in the atherosclerotic lesions. Furthermore, exposure to NaVO3 or VOSO4 induced cytosolic ROS generation and IL-6 production in VSMCs and promoted VSMC synthetic differentiation, migration, and proliferation. The anti-oxidant N-acetylcysteine (NAC) not only suppresses IL-6 production and VSMC pathological responses including migration and proliferation but also prevents atherosclerosis in ApoE−/− mice. Inhibition experiments with NAC and pharmacological inhibitors demonstrated that NaVO3-induced IL-6 production is signaled by ROS-triggered p38-mediated NF-κB-dependent pathways. Neutralizing anti-IL-6 antibodies impaired NaVO3-mediated VSMC migration and proliferation. We concluded that NaVO3 exposure activates the ROS-triggering p38 signaling to selectively induce NF-κB-mediated IL-6 production. These signaling pathways induce VSMC synthetic differentiation, migration, and proliferation, leading to lipid accumulation and atherosclerosis.
Collapse
|
9
|
Receptor for activated C kinase 1 mediates the chronic constriction injury-induced neuropathic pain in the rats’ peripheral and central nervous system. Neurosci Lett 2019; 712:134477. [DOI: 10.1016/j.neulet.2019.134477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/03/2023]
|
10
|
曹 玉, 孙 四, 杨 冬, 霍 艳, 邱 飞, 谢 雪, 庹 勤. [Daxx overexpression inhibits AngⅡ-induced proliferation and migration in vascular smooth muscle cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1173-1179. [PMID: 31801713 PMCID: PMC6867952 DOI: 10.12122/j.issn.1673-4254.2019.10.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To construct a recombinant lentiviral expression vector pCDH-Daxx-EGFP to investigate the effect of Daxx on the proliferation of vascular smooth muscle cells (VSMCs). METHODS The recombinant lentiviral expression vector pCDHDaxx-EGFP was constructed using PCR-based accurate synthesis method. After identification by sequencing and enzyme digestion, the recombinant lentiviral vector was contransfected into 293T cells with lentivirus packaging vector. The recombinant lentivirus particles were collected and purified to infect VSMCs, whose expression of Daxx was detected with Western boltting. The cells infected with the empty vector pCDH-EGFP or pCDH-Daxx-EGFP were incubated in serum-free medium or in the presence of angiotensin Ⅱ (AngⅡ). The cell viability was determined with MTT assay, and the cell cycle changes were analyzed with flow cytometry. The cell migration ability was assessed using a scratch wound healing assay. The expression of p-Akt protein in the cells was detected using Western blotting. RESULTS Double enzyme digestion and sequencing confirmed successful construction of the recombinant plasmid. Compared with the cells infected with the empty vector, the cells infected with pCDH-Daxx-EGFP exhibited significantly increased expressions of Daxx protein (P < 0.05). AngⅡ treatment of the cells infected with the pCDH-Daxx-EGFP, as compared with the cells infected with the empty vector, significantly lowered the cell viability, S phase cell ratio and cell migration ability (P < 0.05), and significantly decreased the expression level of p-Akt protein (P < 0.05). CONCLUSIONS We successfully constructed the recombinant lentiviral vector pCDH-Daxx-EGFP and overexpressed Daxx in primary cultured VSMCs using this vector. Daxx overexpression can inhibit AngⅡ-induced proliferation and migration in VSMCs probably by regulating p-Akt protein.
Collapse
Affiliation(s)
- 玉梅 曹
- 湖南中医药大学 药学院,湖南 长沙 410208School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - 四玉 孙
- 湖南中医药大学 药学院,湖南 长沙 410208School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - 冬梅 杨
- 湖南中医药大学 医学院,湖南 长沙 410208School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - 艳杰 霍
- 湖南中医药大学 药学院,湖南 长沙 410208School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - 飞 邱
- 湖南中医药大学 医学院,湖南 长沙 410208School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - 雪娇 谢
- 湖南中医药大学 医学院,湖南 长沙 410208School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - 勤慧 庹
- 湖南中医药大学 药学院,湖南 长沙 410208School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- 湖南中医药大学 医学院,湖南 长沙 410208School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
11
|
Lee GL, Yeh CC, Wu JY, Lin HC, Wang YF, Kuo YY, Hsieh YT, Hsu YJ, Kuo CC. TLR2 Promotes Vascular Smooth Muscle Cell Chondrogenic Differentiation and Consequent Calcification via the Concerted Actions of Osteoprotegerin Suppression and IL-6–Mediated RANKL Induction. Arterioscler Thromb Vasc Biol 2019; 39:432-445. [DOI: 10.1161/atvbaha.118.311874] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective—
Vascular smooth muscle cell (VSMC) transformation to an osteochondrogenic phenotype is an initial step toward arterial calcification, which is highly correlated with cardiovascular disease–related morbidity and mortality. TLR2 (Toll-like receptor 2) plays a pathogenic role in the development of vascular diseases, but its regulation in calcification of arteries and VSMCs remains unclear. We postulate that TLR2-mediated inflammation participates in mediating atherosclerotic arterial calcification and VSMC calcification.
Approach and Results—
We found that
ApoE
−/−
Tlr2
−/−
genotype in mice suppressed high-fat diet–induced atherosclerotic plaques formation during initiation but progressively lost its preventative capacity, compared with
ApoE
−/−
mice. However, TLR2 deficiency prohibited high-fat diet–induced advanced atherosclerotic calcification, chondrogenic metaplasia, and OPG (osteoprotegerin) downregulation in the calcified lesions. Incubation of VSMCs in a calcifying medium revealed that TLR2 agonists significantly increased VSMC calcification and chondrogenic differentiation. Furthermore, TLR2 deficiency suppressed TLR2 agonist–mediated VSMC chondrogenic differentiation and consequent calcification, which were triggered via the concerted actions of IL (interleukin)-6–mediated RANKL (receptor activator of nuclear factor κB ligand) induction and OPG suppression. Inhibition experiments with pharmacological inhibitors demonstrated that IL-6–mediated RANKL induction is signaled by p38 and ERK1/2 (extracellular signal-regulated kinase 1/2) pathways, whereas the OPG is suppressed via NF-κB (nuclear factor κB) dependent signaling mediated by ERK1/2.
Conclusions—
We concluded that on ligand binding, TLR2 activates p38 and ERK1/2 signaling to selectively modulate the upregulation of IL-6–mediated RANKL and downregulation of OPG. These signaling pathways act in concert to induce chondrogenic transdifferentiation of VSMCs, which in turn leads to vascular calcification during the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Guan-Lin Lee
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Chang-Ching Yeh
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (C.-C.Y., Y.-J.H., C.-C.K.)
| | - Jing-Yiing Wu
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Hui-Chen Lin
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Yi-Fu Wang
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Ya-Yi Kuo
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Yi-Ting Hsieh
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
| | - Yu-Juei Hsu
- Division of Nephrology and Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan (Y.-J.H)
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (C.-C.Y., Y.-J.H., C.-C.K.)
| | - Cheng-Chin Kuo
- From the Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Maioli, Taiwan (G.-L.L., C.-C.Y., J.-Y.W., H.-C.L., Y.-F.W., Y.-Y.K., Y.-T.H., C.-C.K.)
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan (C.-C.Y., Y.-J.H., C.-C.K.)
- Metabolomic Research Center and Graduate Institute of Basic Medical Science China Medical University Hospital, Taichung, Taiwan (C.-C.K.)
| |
Collapse
|
12
|
Peng J, He X, Zhang L, Liu P. MicroRNA‑26a protects vascular smooth muscle cells against H2O2‑induced injury through activation of the PTEN/AKT/mTOR pathway. Int J Mol Med 2018; 42:1367-1378. [PMID: 29956734 PMCID: PMC6089772 DOI: 10.3892/ijmm.2018.3746] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/20/2018] [Indexed: 01/12/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common disease, which is characterized by the apoptosis of vascular smooth muscle cells (VSMCs). In previous years, microRNAs (miRNAs) have been associated with AAA and functionally implicated in the pathogenesis of this disease. However, the role of miRNAs in the apoptosis of VSMCs remains to be fully elucidated. The present study aimed to elucidate the role and mechanism of miRNAs in protecting against hydrogen peroxide (H2O2)-induced apoptosis in VSMCs. The expression of miRNAs in peripheral blood from patients diagnosed with AAA was analyzed using a microarray and reverse transcription polymerase chain reaction. A VSMC injury model induced by H2O2 was used to determine the potential role of miR-26a against cell injury. Cell viability, cell apoptosis and reactive oxygen species (ROS) generation were determined by a CCK8 assay, flow cytometry and a 2′,7′-DCF diacetate assay, respectively. It was observed that miRNA (miR)-26a (miR-26a-1-5p) was significantly downregulated in peripheral blood samples from patients with AAA. It was revealed that H2O2 treatment dose-dependently inhibited cell viability, enhanced apoptosis and induced the production of ROS, which indicated the success of the model establishment. It was also observed that miR-26a was downregulated in the VSMCs following H2O2 stimulation. The upregulation of miR-26a attenuated H2O2-induced cell injury, as evidenced by the enhancement of cell viability, and inhibition of the activity of caspase-3, apoptosis and ROS production. In addition, phosphatase and tensin homolog (PTEN), a well-known regulator of the AKT/mammalian target of rapamycin (mTOR) pathway, was found to be a direct target of miR-26a in the VSMCs and this was validated using a luciferase reporter assay. Overexpression of PTEN by pcDNA-PTEN plasmids markedly eliminated the protective effects of the overexpression of miR-26a on H2O2-induced cell injury. Finally, it was found that miR-26a mediated its anti-apoptotic action by reactivation of the AKT/mTOR pathway, as demonstrated by the upregulation of phosphorylated (p-)AKT and p-mTOR, and the Akt inhibitor API-2 reversing the protective effects on VSMCs mediated by miR-26a. These results indicated that miR-26a protected VSMCs against H2O2-induced injury through activation of the PTEN/AKT/mTOR pathway, and miR-26a may be considered as a potential prognostic biomarker and therapeutic target in the treatment of AAA.
Collapse
Affiliation(s)
- Junlu Peng
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lei Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Peng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Huang CJ, Lee FK, Chen SK, Chien CC, Wu ST, Wang YC. Clinical significance of interleukin‑6 and inducible nitric oxide synthase in ketamine‑induced cystitis. Int J Mol Med 2017; 41:836-844. [PMID: 29207018 PMCID: PMC5752171 DOI: 10.3892/ijmm.2017.3264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/30/2017] [Indexed: 11/21/2022] Open
Abstract
Ketamine is an ionotropic glutamatergic N-methyl-D-aspartate receptor antagonist, which is widely used among recreational drug abusers. Ketamine abusers exhibit substantially reduced bladder capacity, which can lead to urinary frequency. The molecular pathogenesis of ketamine-induced cystitis has been scarcely reported. Given previous clinical findings, it may be hypothesized that pathological alterations in smooth muscle cells (SMCs) of the urinary bladder serve a crucial role in the mechanism underlying cystitis. In the present study, two lineages of SMCs, one from differentiated foreskin-derived fibroblast-like stromal cells and the other from cultured normal aortic SMCs, were used to study ketamine-induced molecular alterations. Polymerase chain reaction was used to study the effects of ketamine on oxidative stress. The effects of adjuvant chemo-therapy with cyclophosphamide (CTX) were also investigated. The results indicated that the expression levels of interleukin-6 and inducible nitric oxide synthase (iNOS) were decreased, whereas collagen expression and deposition were increased in ketamine-treated SMCs. Conversely, treatment with CTX restored the expression of iNOS, which may prevent or limit oxidative damage. In conclusion, the present study demonstrated that ketamine may induce several molecular alterations in SMCs and these changes may be associated with the clinical symptoms observed in ketamine abusers. In addition, the specific chemotherapeutic agent CTX may reverse these ketamine-induced aberrations.
Collapse
Affiliation(s)
- Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Fa-Kung Lee
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shao-Kuan Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chih-Cheng Chien
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri‑Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Yen-Chieh Wang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| |
Collapse
|
14
|
Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, Hao H, Xie S, Yuan Z, Wang X. PKA/CREB and NF-κB pathway regulates AKNA transcription: A novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology 2017; 392:81-95. [DOI: 10.1016/j.tox.2017.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
15
|
Korkmaz FT, Kerr DE. Genome-wide methylation analysis reveals differentially methylated loci that are associated with an age-dependent increase in bovine fibroblast response to LPS. BMC Genomics 2017; 18:405. [PMID: 28545453 PMCID: PMC5445414 DOI: 10.1186/s12864-017-3796-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Differences in DNA methylation are known to contribute to the development of immune-related disorders in humans but relatively little is known about how methylation regulates immune function in cattle. Utilizing whole-transcriptome analyses of bovine dermal fibroblasts, we have previously identified an age and breed-dependent up-regulation of genes within the toll-like receptor 4 (TLR4) pathway that correlates with enhanced fibroblast production of IL-8 in response to lipopolysaccharide (LPS). Age-dependent differences in IL-8 production are abolished by treatment with 5-aza-2-deoxycytidine and Trichostatin A (AZA-TSA), suggesting epigenetic regulation of the innate response to LPS. In the current study, we performed reduced representation bisulfite sequencing (RRBS) on fibroblast cultures isolated from the same animals at 5- and 16-months of age to identify genes that exhibit variable methylation with age. To validate the role of methylation in gene expression, six innate response genes that were hyper-methylated in young animals were assessed by RT-qPCR in fibroblasts from animals at different ages and from different breeds. RESULTS We identified 14,094 differentially methylated CpGs (DMCs) that differed between fibroblast cultures at 5- versus 16-months of age. Of the 5065 DMCs that fell within gene regions, 1117 were located within promoters, 1057 were within gene exons and 2891 were within gene introns and 67% were more methylated in young cultures. Transcription factor enrichment of the promoter regions hyper-methylated in young cultures revealed significant regulation by the key pro-inflammatory regulator, NF-κB. Additionally, five out of six chosen genes (PIK3R1, FES, NFATC1, TNFSF13 and RORA) that were more methylated in young cultures showed a significant reduction in expression post-LPS treatment in comparison with older cultures. Two of these genes, FES and NFATC1, were similarly down-regulated in Angus cultures that also exhibit a low LPS response phenotype. CONCLUSIONS Our study has identified immune-related loci regulated by DNA methylation in cattle that may contribute to differential cellular response to LPS, two of which exhibit an identical expression profile in both low-responding age and breed phenotypes. Methylation biomarkers of differential immunity may prove useful in developing selection strategies for replacement cows that are less susceptible to severe infections, such as coliform mastitis.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA. .,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA.
| | - David E Kerr
- Cellular, Molecular and Biomedical Sciences Program, University of Vermont, 89 Beaumont Avenue, C141C Given, Burlington, VT, 05405, USA.,Department of Animal and Veterinary Sciences, University of Vermont, 570 Main Street, 213 Terrill Hall, Burlington, VT, 05405, USA
| |
Collapse
|