1
|
Carter LJ, Adams B, Berman T, Cohen N, Cytryn E, Elder FCT, Garduño-Jiménez AL, Greenwald D, Kasprzyk-Hordern B, Korach-Rechtman H, Lahive E, Martin I, Ben Mordechay E, Murray AK, Murray LM, Nightingale J, Radian A, Rubin AE, Sallach B, Sela-Donenfeld D, Skilbeck O, Sleight H, Stanton T, Zucker I, Chefetz B. Co-contaminant risks in water reuse and biosolids application for agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126219. [PMID: 40210163 DOI: 10.1016/j.envpol.2025.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Agriculture made the shift toward resource reuse years ago, incorporating materials such as treated wastewater and biosolids. Since then, research has documented the widespread presence of contaminants of emerging concern in agricultural systems. Chemicals such as pesticides, pharmaceuticals and poly- and -perfluoroalkyl substances (PFASs); particulate matter such as nanomaterials and microplastics; and biological agents such as antibiotic resistance genes (ARGs) and bacteria (ARB) are inadvertently introduced into arable soils where they can be taken up by crops and introduced to the food-web. Thus, concern about the presence of contaminants in agricultural environments has grown in recent years with evidence emerging linking agricultural exposure and accumulation in crops to ecosystem and human health effects. Our current assessment of risk is siloed by working within disciplines (i.e., chemistry and microbiology) and mostly focused on individual chemical classes. By not acknowledging the fact that contaminants are mostly introduced as a mixture, with the potential for interactions, with each other and with environmental factors, we are limiting our current approach to evaluate the real potential for ecosystem and human health effects. By uniting expertise across disciplines to integrate recent understanding regarding the risks posed by a range of chemically diverse contaminants in resources destined for reuse, this review provides a holistic perspective on the current regulatory challenges to ensure safe and sustainable reuse of wastewater and biosolids to support a sanitation-agriculture circular economy.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK.
| | - Beth Adams
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK; Fera Science Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Israel
| | - Nririt Cohen
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Eddie Cytryn
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - F C T Elder
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | | | - Danny Greenwald
- The Israeli Water and Sewerage Authority, Jerusalem, 9195021, Israel
| | | | | | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, OX10 8BB, UK
| | - Ian Martin
- Environment Agency, Aqua House, 20 Lionel Street, Birmingham, B3 1AQ, UK
| | - Evyatar Ben Mordechay
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - Laura M Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - John Nightingale
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Brett Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Dalit Sela-Donenfeld
- Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Olivia Skilbeck
- School of Design, Faculty of Arts, Humanities and Cultures, University of Leeds, LS2 9JT, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Thomas Stanton
- Department of Geography and Environment, Loughborough University, LE11 3TU, UK
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Benny Chefetz
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
2
|
Trognon J, Albasi C, Choubert JM. A critical review on the pathways of carbamazepine transformation products in oxidative wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169040. [PMID: 38061647 DOI: 10.1016/j.scitotenv.2023.169040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug, released in domestic and hospital wastewater, and one of the drugs most commonly detected in surface water. Conventional secondary processes do a very poor job of removing it (<25 %), but its concentrations are significantly reduced by polishing oxidation processes. However, there are still many unknowns regarding the transformation products generated and their fate. This review first presents the journey of CBZ and its transformation products (TPs) in wastewater, from human consumption to discharge in water bodies. It then goes on to detail the diversity of mechanisms responsible for CBZ degradation and the generation of multiple TPs, laying the emphasis on the different types of advanced oxidation processes (AOP). 135 TPs were reported and a map describing their formation/degradation pathways was drawn up. This work highlights the wide range of physicochemical properties and toxicity effects of TPs on aquatic organisms and provides information about TPs of interest for future research. Finally, this review concludes on the importance of quantifying TPs and of determining kinetic characteristics to produce more accurate reaction schemes and computer-based fate predictions.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
3
|
Güler H, Esen EE, Balcıoğlu E, Göktepe Ö, Yılmaz H, Yay AH, Nisari M, Al Ö, Uçar S, Güçlü Ekinci HK, Tokpınar A, Yılmaz S. Bone development in offspring of pregnant rats treated with carbamazepine: Evaluation by three different methods. Epilepsia 2022; 63:3066-3077. [PMID: 36168801 DOI: 10.1111/epi.17422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study was carried out to determine the effect of intrauterine carbamazepine (CBZ) exposure on fetal bone development during pregnancy. METHODS In the study, 24 female Wistar pregnant rats were used. Rats were 20 weeks old. They had an average body weight of 150-200 g. Pregnant rats were randomly selected and divided (n = 6) into a control group, low-dose CBZ (10 mg/kg/day) group, medium-dose CBZ (25 mg/kg/day) group, and high-dose CBZ (50 mg/kg/day) group. The ossification length (mm) and ossification area (mm2 ) of the long bones of the fetuses in the experimental and control groups were calculated. The densities of alkaline phosphatase (AP) and tartrate-resistant acid phosphatase (TRAP) were analyzed. The ossification regions of the femurs of the fetuses were examined under a light microscope. Microstructural images of the femurs were evaluated with scanning electron microscope photographs. The densities of minerals involved in the ossification process were analyzed. RESULTS According to the results of the study, all three doses of CBZ caused loss of ossification areas, and it was observed that this bone loss also increased statistically significantly depending on the dose increase (p < .05). Calcium concentration decreased in the CBZ groups. When the electron microscope images were examined, it was determined that the cartilage matrix of the CBZ groups was thinned. In the histological evaluation of the groups, narrowing of the primary bone collar and smaller bone spicules in the ossification region compared to the control group were noted due to the increase in dose in the CBZ groups. In immunohistochemical staining, it was observed that the TRAP and AP expression values of the femurs were the lowest in the CBZ groups. These decreases were also statistically significant when compared with the control group. SIGNIFICANCE It was revealed with both microscopic and macroscopic findings that exposure to intrauterine CBZ negatively affected ossification and bone growth.
Collapse
Affiliation(s)
- Hatice Güler
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Eda Esra Esen
- Basic Medical Sciences, Department of Anatomy, Sütçü İmam University, Kahramanmaraş, Turkey
| | - Esra Balcıoğlu
- Basic Medical Sciences, Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Basic Medical Sciences, Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Halil Yılmaz
- Basic Medical Sciences, Department of Anatomy, Ordu University, Ordu, Turkey
| | - Arzu Hanım Yay
- Basic Medical Sciences, Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehtap Nisari
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Al
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sümeyye Uçar
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hilal Kübra Güçlü Ekinci
- Basic Medical Sciences, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Adem Tokpınar
- Basic Medical Sciences, Department of Anatomy, Ordu University, Ordu, Turkey
| | - Seher Yılmaz
- Basic Medical Sciences, Department of Anatomy, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
4
|
Oliva SU, Andretta RR, Simas JN, Tesser RB, Paccola CC, Miraglia SM. Thyroid hormones, Sertoli cell proliferation and differentiation in progenies from carbamazepine-treated rat dams during pregnancy and lactation. Andrologia 2021; 53:e13969. [PMID: 33433934 DOI: 10.1111/and.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Carbamazepine (CBZ) is used in the control of seizure and affective disorders, causing hypothyroidism. Thyroid hormones regulate the Sertoli cell proliferation and differentiation. Clinical aspects must be considered since epileptic fertile women need to continuously use CBZ during pregnancy and lactation. This study aimed to evaluate the effects of CBZ on testis development of rat offspring from dams treated during pregnancy/lactation. Rat dams received CBZ (20 mg kg-1 day-1 ) or vehicle by intra-peritoneal route during gestation and lactation. Progenies were euthanised at 4, 14, 41, 63 and 93-days post-partum (dpp) for the evaluation of T3, T4 and TSH plasma total levels. Testicular cross sections were submitted to anti-Ki67, anti-PCNA, anti-p27kip1 and anti-transferrin immunolabelling for the evaluation of Sertoli cells. There was a significant reduction in p27kip1 -positive Sertoli cell numerical densities and an increase in TSH level at 14 dpp. CBZ exposure affected the volume density of transferrin-positive immunolabelling at 63 dpp. These results suggest that CBZ may cause a dysregulation of the controller system of thyroid hormones homeostasis leading to an increase in the proliferation rate at the neonatal phase and a differentiation delay of the Sertoli cell, culminating in an altered function at late puberty. The occurrence of hypothyroidism cannot be completely discarded.
Collapse
Affiliation(s)
- Samara U Oliva
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rhaiza R Andretta
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Joana N Simas
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Camila C Paccola
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sandra M Miraglia
- Department of Morphology and Genetics, Developmental Biology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Jafari Mohammadabadi H, Rahmatian A, Sayehmiri F, Rafiei M. The Relationship Between the Level of Copper, Lead, Mercury and Autism Disorders: A Meta-Analysis. Pediatric Health Med Ther 2020; 11:369-378. [PMID: 33061742 PMCID: PMC7519826 DOI: 10.2147/phmt.s210042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/17/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES There is a likelihood of a possible relationship between the concentrations of copper, lead, and mercury and autism. The present review was carried out to determine the relationship between the concentrations of these elements and autism by meta-analysis. METHODS In this study, searching Scopus, PubMed, and Science Direct databases, 18 articles conducted in different countries from 1982 to 2019 were collected. Studies' heterogeneity was investigated using the I2 index. The data were analyzed using R and STATA software. RESULTS In these 18 studies, 1797 patients (981 cases and 816 controls) aged 2 to 16 years were examined. Concentration of the samples (blood, hair, and nails) for both case and control groups was evaluated. There was no significant relationship between copper concentration and autism (SMD (95% CI): 0.02 (-1.16,1.20); I2=97.7%; P=0.972); there was a significant relationship between mercury concentration and autism (SMD (95% CI): 1.96 (0.56,3.35); I2=98.6%; P=0.006); there was also a significant relationship between lead concentration and autism (SMD (95% CI): 2.81 (1.64,3.98); I2=97.8%; P=0.000). CONCLUSION There is, nevertheless, a significant relationship between mercury concentration and autism. Thus, the concentration of mercury can be listed as a pathogenic cause (disease-causing) for autism.
Collapse
Affiliation(s)
| | | | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rafiei
- Department of Biostatistics and Epidemiology, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Kaushik G, Gupta K, Harms V, Torr E, Evans J, Johnson HJ, Soref C, Acevedo-Acevedo S, Antosiewicz-Bourget J, Mamott D, Uhl P, Johnson BP, Palecek SP, Beebe DJ, Thomson JA, Daly WT, Murphy WL. Engineered Perineural Vascular Plexus for Modeling Developmental Toxicity. Adv Healthc Mater 2020; 9:e2000825. [PMID: 32613760 PMCID: PMC8016604 DOI: 10.1002/adhm.202000825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/19/2022]
Abstract
There is a vital need to develop in vitro models of the developing human brain to recapitulate the biological effects that toxic compounds have on the brain. To model perineural vascular plexus (PNVP) in vitro, which is a key stage in embryonic development, human embryonic stem cells (hESC)-derived endothelial cells (ECs), neural progenitor cells, and microglia (MG) with primary pericytes (PCs) in synthetic hydrogels in a custom-designed microfluidics device are cocultured. The formation of a vascular plexus that includes networks of ECs (CD31+, VE-cadherin+), MG (IBA1+), and PCs (PDGFRβ+), and an overlying neuronal layer that includes differentiated neuronal cells (βIII Tubulin+, GFAP+) and radial glia (Nestin+, Notch2NL+), are characterized. Increased brain-derived neurotrophic factor secretion and differential metabolite secretion by the vascular plexus and the neuronal cells over time are consistent with PNVP functionality. Multiple concentrations of developmental toxicants (teratogens, microglial disruptor, and vascular network disruptors) significantly reduce the migration of ECs and MG toward the neuronal layer, inhibit formation of the vascular network, and decrease vascular endothelial growth factor A (VEGFA) secretion. By quantifying 3D cell migration, metabolic activity, vascular network disruption, and cytotoxicity, the PNVP model may be a useful tool to make physiologically relevant predictions of developmental toxicity.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA
| | - Kartik Gupta
- Department of Surgery, University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
| | - Victoria Harms
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA
| | - Elizabeth Torr
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA
| | - Jonathan Evans
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Hunter J. Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Cheryl Soref
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA
| | - Suehelay Acevedo-Acevedo
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | | | - Daniel Mamott
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
| | - Peyton Uhl
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA
| | - Brian P. Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave., Madison, WI 53705, USA, University of Wisconsin Carbone Center Research, 600 Highland Ave., Madison, WI 53792, USA, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| | - James A. Thomson
- Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, USA
| | - William T. Daly
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA
| | - William L. Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Ave., WIMR 5418, Madison, WI 53705, USA, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA
| |
Collapse
|
7
|
Saunders NR, Dziegielewska KM. Medications for pregnant women: A balancing act between the interests of the mother and of the fetus. Prenat Diagn 2020; 40:1156-1167. [PMID: 32335932 DOI: 10.1002/pd.5720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Drug entry into the adult brain is controlled by efflux mechanisms situated in various brain barrier interfaces. The effectiveness of these protective mechanisms in the embryo, fetus and newborn brain is less clear. The longstanding belief that "the" blood-brain barrier is absent or immature in the fetus and newborn has led to many misleading statements with potential clinical implications. Here we review the properties of brain barrier mechanisms in the context of drug entry into the developing brain and discuss the limited number of studies published on the subject. We noticed that most of available literature suffers from some experimental limitations, notably that drug levels in fetal blood and cerebrospinal fluid have not been measured. This means that the relative contribution to the overall brain protection provided by individual barriers such as the placenta (which contains similar efflux mechanisms) and the brain barriers cannot be separately ascertained. Finally, we propose that systematic studies in appropriate animal models of drug entry into the brain at different stages of development would provide a rational basis for use of medications in pregnancy and in newborns, especially prematurely born, where protection usually provided by the placenta is no longer present.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
8
|
Kaushik G, Thomas MA. The potential association of psychoactive pharmaceuticals in the environment with human neurological disorders. SUSTAINABLE CHEMISTRY AND PHARMACY 2019; 13:100148. [PMID: 31453309 PMCID: PMC6709680 DOI: 10.1016/j.scp.2019.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Psychoactive pharmaceuticals release into the environment and reach humans through a variety of routes, including sewage, drinking water, contaminated irrigation water, biosolids, soil and food. It was assumed that these compounds via the environment could induce genetic effects in the etiology of human neurological disorders. With the help of in vitro, in vivo and in silico approaches, we demonstrated that psychoactive pharmaceuticals in drinking water can cross maternal biological barriers and alter in vitro molecular and genetic mechanisms that potentially have a key role in the development, growth and regulation of neuronal systems during embryonic brain development.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8 Ave, Pocatello, ID 83209-8007, USA
- Stem Pharm, Incorporated, Madison, WI 53711 USA
- Corresponding author
| | - Michael A. Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8 Ave, Pocatello, ID 83209-8007, USA
| |
Collapse
|
9
|
Abstract
Background: A major concern for clinicians in prescribing medications to pregnant women and neonates is the possibility that drugs might have damaging effects, particularly on long-term brain development. Current understanding of drug permeability at placental and blood-brain barriers during development is poor. In adults, ABC transporters limit many drugs from entering the brain; however, little is known about their function during development. Methods: The transfer of clinically relevant doses of paracetamol (acetaminophen), digoxin and cimetidine into the brain and cerebrospinal fluid (CSF) was estimated using radiolabelled drugs in Sprague Dawley rats at three developmental stages: E19, P4 and adult. Drugs were applied intraperitoneally either acutely or following chronic exposure (for five days). Entry into brain, CSF and transfer across the placenta was measured and compared to three markers (L-glucose, sucrose, glycerol) that cross barriers by "passive diffusion". The expression of ABC transporters in the brain, choroid plexus and placenta was estimated using RT-qPCR. Results: All three drugs entered the developing brain and CSF in higher amounts than the adult brain and CSF. Comparisons with "passive" permeability markers suggested that this might be due to age-related differences in the functional capacity of ABC-efflux mechanisms. In adult animals, chronic treatment reduced digoxin (12% to 5%, p<0.01) and paracetamol (30% to 21%, p<0.05) entry compared to acute treatment, with the decrease in digoxin entry correlating with up-regulation of efflux transporter abcb1a (PGP). In fetal and newborn animals, no gene up-regulation or transfer decreases were observed. Instead, chronic paracetamol treatment resulted in increased transfer into the fetal brain (66% to 104%, p<0.001). Conclusions: These results suggest that the developing brain may be more at risk from acute drug exposure than the adult brain due to reduced efflux capacity and at greater risk from chronic treatment due to a lack of efflux mechanism regulatory capacity.
Collapse
Affiliation(s)
- Liam Koehn
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mark Habgood
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yifan Huang
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Katarzyna Dziegielewska
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Norman Saunders
- Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
10
|
Kohl A, Golan N, Cinnamon Y, Genin O, Chefetz B, Sela-Donenfeld D. A proof of concept study demonstrating that environmental levels of carbamazepine impair early stages of chick embryonic development. ENVIRONMENT INTERNATIONAL 2019; 129:583-594. [PMID: 31174146 DOI: 10.1016/j.envint.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/20/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug used for epilepsy and other disorders. Prescription of CBZ during pregnancy increases the risk for congenital malformations. CBZ is ubiquitous in effluents and persistent during wastewater treatment. Thus, it is re-introduced into agricultural ecosystems upon irrigation with reclaimed wastewater. People consuming produce irrigated with reclaimed wastewater were found to be exposed to CBZ. However, environmental concentrations of CBZ (μgL-1) are magnitudes lower than its therapeutic levels (μgml-1), raising the question of whether and how environmental levels of CBZ affect embryonic development. The chick embryo is a powerful and highly sensitive amniotic model system that enables to assess environmental contaminants in the living organism. Since the chick embryonic development is highly similar to mammalians, yet, it develops in an egg, toxic effects can be directly analyzed in a well-controlled system without maternal influences. This research utilized the chick embryo to test whether CBZ is embryo-toxic by using morphological, cellular, molecular and imaging strategies. Three key embryonic stages were monitored: after blastulation (st.1HH), gastrulation/neurulation (st.8HH) and organogenesis (st.15HH). Here we demonstrate that environmental relevant concentrations of CBZ impair morphogenesis in a dose- and stage- dependent manner. Effects on gastrulation, neural tube closure, differentiation and proliferation were exhibited in early stages by exposing embryos to CBZ dose as low as 0.1μgL-1. Quantification of developmental progression revealed a significant difference in the total score obtained by CBZ-treated embryos compared to controls (up to 5-fold difference, p<0.05). Yet, defects were unnoticed as embryos passed gastrulation/neurulation. This study provides the first evidence for teratogenic effect of environmental-relevant concentrations of CBZ in amniotic embryos that impair early but not late stages of development. These findings call for in-depth risk analysis to ensure that the environmental presence of CBZ and other drugs is not causing irreversible ecological and public-health damages.
Collapse
Affiliation(s)
- Ayelet Kohl
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Golan
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
11
|
Zhang Y, Tu B, Jiang X, Xu G, Liu X, Tang Q, Bai L, Meng P, Zhang L, Qin X, Zou Z, Chen C. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 2019; 422:44-52. [PMID: 31022427 DOI: 10.1016/j.tox.2019.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Maternal exposure to carbon black nanoparticles (CBNPs) during pregnancy have been well documented to induce harmful outcomes of offspring on brain function. However, it remains largely unknown whether females exposed to CBNPs during sensitive period of pregnancy can cause the neurotoxic effects on their own body after parturition. In this study, our results showed that pregnancy CBNPs exposure induced the persistent pathological changes in the cerebral cortex tissues and impaired cerebrovascular function of mice manifested by significant alterations of endothelin-1, endothelial nitric oxide synthase, vascular endothelial growth factor-A and ATP-binding cassette transporter G1. Intriguingly, we observed that these deleterious effects on brain and cerebrovascular functions in mice could persist for 49 days after delivery of pups. By using in vitro human umbilical vein endothelial cells, we further verified the potential vascular dysfunction after CBNPs exposure. In summary, our results provide the first evidence that pregnancy CBNPs exposure-induced brain pathological changes and cerebrovascular dysfunction can persist for a relative long time. These finding suggest exposure to CBNPs during sensitive stages of pregnancy may not only show the harmful effects on offspring neurodevelopment, but also result in the irreversible brain damage on mother body.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Longbin Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
12
|
Anand M, Singh L, Agarwal P, Saroj R, Taneja A. Pesticides exposure through environment and risk of pre-term birth: a study from Agra city. Drug Chem Toxicol 2017; 42:471-477. [PMID: 29250999 DOI: 10.1080/01480545.2017.1413107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pre-term birth is an increasingly prevalent complex condition with multiple risk factors including environmental pollutants. Evidences linking organochlorine pesticides with adverse pregnancy outcomes are inconsistent for link between organochlorine pesticides and adverse pregnancy outcomes. We performed a case-control study of 50 cases of full-term births and 40 cases of pre-term births in this study. Placental organochlorine pesticides like metabolites of dichlorodiphenyltrichloroethane that is, (p,p-DDE, p,p-DDT and o,p-DDD) and isomers of hexachlorocyclohexane (α, β, γ and δ HCH) were analyzed by gas chromatography. Although the mean levels of pesticide were found higher in the placenta of the women with pre-term delivery cases placentas, but only α-HCH, total-HCH, p,p-DDE and total-DDT were found statistically significant. It was observed that pesticide exposed women were approximately 1.7 times more likely to deliver pre-term baby as compare to pregnant women that were not exposed to any pesticides. We also observed that increasing maternal age reduced the risk of having pre-term birth (OR = 0.99). Among all pesticides, α-HCH was found to be strongest isomer to induce premature baby birth (p < 0.001). This study found that pregnant women's age and chronic disease, baby's weight at the time of birth and α-HCH were important risk factors for pre-term births.
Collapse
Affiliation(s)
- M Anand
- a Department of Chemistry , Dr. B.R. Ambedkar University , Agra , India
| | - L Singh
- a Department of Chemistry , Dr. B.R. Ambedkar University , Agra , India
| | - P Agarwal
- a Department of Chemistry , Dr. B.R. Ambedkar University , Agra , India
| | - R Saroj
- b Division of Bio-statistics, Institute of Medical Sciences , Banaras Hindu University , Varanasi , India
| | - A Taneja
- a Department of Chemistry , Dr. B.R. Ambedkar University , Agra , India
| |
Collapse
|
13
|
Kaushik G, Xia Y, Pfau JC, Thomas MA. Dysregulation of autism-associated synaptic proteins by psychoactive pharmaceuticals at environmental concentrations. Neurosci Lett 2017; 661:143-148. [PMID: 28965935 DOI: 10.1016/j.neulet.2017.09.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave., Pocatello, ID 83209-8007, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI 53705 USA.
| | - Yu Xia
- Division of Biological Sciences, University of Montana, 32 Campus Dr. HS 104, Missoula, MT 59812, USA.
| | - Jean C Pfau
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave., Pocatello, ID 83209-8007, USA; Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Michael A Thomas
- Department of Biological Sciences, Idaho State University, Stop 8007, 921 S 8th Ave., Pocatello, ID 83209-8007, USA.
| |
Collapse
|
14
|
Hampel M, Blasco J, Babbucci M, Ferraresso S, Bargelloni L, Milan M. Transcriptome analysis of the brain of the sea bream (Sparus aurata) after exposure to human pharmaceuticals at realistic environmental concentrations. MARINE ENVIRONMENTAL RESEARCH 2017; 129:36-45. [PMID: 28434674 DOI: 10.1016/j.marenvres.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Human pharmaceuticals such as Acetaminophen, Atenolol and Carbamazepine are pseudo persistent aquatic pollutants with yet unknown sub-lethal effects at environmentally relevant concentrations. Gilthead seabream (Sparus aurata) were exposed to Acetaminophen: 31.90 ± 11.07 μg L-1; Atenolol: 0.95 ± 0.38 μg L-1 and Carbamazepine: 6.95 ± 0.13 μg L-1 in a 28 day flow through experiment to (1) determine whether exposure to low concentrations in the μg·L-1 range of the pharmaceuticals alters the brain transcriptome and, (2) identify different expression profiles and treatment specific modes of action and pathways. Despite low exposure concentrations, 411, 7 and 612 differently expressed transcripts were identified in the individual treatments with Acetaminophen, Atenolol and Carbamazepine, respectively. Functional analyses of differentially expressed genes revealed a significant over representation of several biological processes, cellular compartment features and molecular functions for both Acetaminophen and Carbamazepine treatments. Overall, the results obtained in seabream brain suggest similar physiological responses to those observed in humans also at environmental concentrations, as well as the existence of treatment specific processes that may be useful for the development of biomarkers of contamination.
Collapse
Affiliation(s)
- Miriam Hampel
- Department for Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain; University Institute for Marine Research (INMAR), 11510 Puerto Real, Cadiz, Spain.
| | - Julian Blasco
- Andalusian Institute for Marine Sciences, Department of Ecology and Coastal Management, Campus Universitario Río San Pedro s/n, 11519 Puerto Real, Spain
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, I-35020 Legnaro, Italy
| |
Collapse
|
15
|
Ahmed RG, El-Gareib AW. Maternal carbamazepine alters fetal neuroendocrine-cytokines axis. Toxicology 2017; 382:59-66. [PMID: 28267586 DOI: 10.1016/j.tox.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
Abstract
This study detected the impact of maternal carbamazepine (CBZ) on the fetal neuroendocrine-cytokines axis. 25 or 50mg/kg of CBZ was intraperitoneally administrated to pregnant albino rats from the gestation day (GD) 1 to 20. Both administrations of CBZ caused a hypothyroidism in dams and fetuses whereas the decreases in serum thyroxine (T4) and triiodothyronine (T3) and increases in serum thyrotropin (TSH) levels were highly significant (LSD; P <0.01) at GD 20 compared to untreated control dams. Also, both administrations had undesirable impacts on the maternofetal body weight, litter weight, survival of dams and fetuses, and their food consumption in comparison to the corresponding control. These administrations also elicited a reduction in fetal serum growth hormone (GH), interferon-γ (IFNγ), interleukins (IL-2 & 4) and prostaglandin E2 (PGE2) levels. Also, the elevation in fetal serum tumor necrosis factor-alpha (TNFα), transforming growth factor-beta (TGFβ), and interleukins (IL-1β & 17) levels was observed at embryonic day (ED) 20. Moreover, there were a cellular fragmentation, distortion, hyperemia, oedema and vacuolation in the fetal cerebellar cortex due to both maternal administrations. These developmental changes were dose-dependent. These novel results suggest that CBZ may act as a developmental immunoneuroendocrine disruptor.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
16
|
Silbergeld EK. Drinking Water and the Developing Brain. CEREBRUM : THE DANA FORUM ON BRAIN SCIENCE 2016; 2016:cer-09-16. [PMID: 28058090 PMCID: PMC5198753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While the problem of unsafe tap water in Flint, Michigan fueled outrage and better awareness in regard to the hazards of lead in tap water, the problem has existed in city after city for years in the US and in other countries. Our author, a winner of the MacArthur Foundation "genius" grant for her work in identifying preventable causes of human disease related to environmental exposures, points out that problems extend well beyond lead. Many potentially harmful contaminants have yet to be evaluated, much less regulated. Her article examines a number of neurotoxins and related issues as they pertain to brain development.
Collapse
|
17
|
Psychoactive pharmaceuticals at environmental concentrations induce in vitro gene expression associated with neurological disorders. BMC Genomics 2016; 17 Suppl 3:435. [PMID: 27356971 PMCID: PMC4943479 DOI: 10.1186/s12864-016-2784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background A number of researchers have speculated that neurological disorders are mostly due to the interaction of common susceptibility genes with environmental, epigenetic and stochastic factors. Genetic factors such as mutations, insertions, deletions and copy number variations (CNVs) are responsible for only a small subset of cases, suggesting unknown environmental contaminants play a role in triggering neurological disorders like idiopathic autism. Psychoactive pharmaceuticals have been considered as potential environmental contaminants as they are detected in the drinking water at very low concentrations. Preliminary studies in our laboratory identified gene sets associated with neuronal systems and human neurological disorders that were significantly enriched after treating fish brains with psychoactive pharmaceuticals at environmental concentrations. These gene expression inductions were associated with changes in fish behavior. Here, we tested the hypothesis that similar treatments would alter in vitro gene expression associated with neurological disorders (including autism) in human neuronal cells. We differentiated and treated human SK-N-SH neuroblastoma cells with a mixture (fluoxetine, carbamazepine and venlafaxine) and valproate (used as a positive control to induce autism-associated profiles), followed by transcriptome analysis with RNA-Seq approach. Results We found that psychoactive pharmaceuticals and valproate significantly altered neuronal gene sets associated with human neurological disorders (including autism-associated sets). Moreover, we observed that altered expression profiles in human cells were similar to gene expression profiles previously identified in fish brains. Conclusions Psychoactive pharmaceuticals at environmental concentrations altered in vitro gene expression profiles of neuronal growth, development and regulation. These expression patterns were associated with potential neurological disorders including autism, suggested psychoactive pharmaceuticals at environmental concentrations might mimic, aggravate, or induce neurological disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2784-1) contains supplementary material, which is available to authorized users.
Collapse
|