1
|
Jiang S, Jiang L, Xu Y, Ma Y, Deng Y, Jiao C, Yin M, Qin C, Li J, Zhang L, Chen S. USP5 deubiquitinates and stabilizes IMPDH2, to promote hepatocellular carcinoma progression. Oncogene 2025:10.1038/s41388-025-03355-7. [PMID: 40164869 DOI: 10.1038/s41388-025-03355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Modulating deubiquitinase activity is an emerging therapeutic approach for cancer. In this study, ubiquitin-specific protease 5 (USP5), a deubiquitinase, was found to be frequently overexpressed in hepatocellular carcinoma (HCC) and associated with poor prognosis in patients with HCC. Inosine monophosphate dehydrogenase 2 (IMPDH2) was identified as a binding partner of USP5. USP5 N-terminal domain (cryptic ZnF-UBP and ZnF-UBP domain) interacted with IMPDH2 (251-514 aa). IMPDH2 positively correlated with USP5 expression in HCC. Mechanistically, USP5 removed Lys48-linked ubiquitin chains from IMPDH2 through its deubiquitinase activity, preventing its ubiquitin-mediated degradation and stabilizing IMPDH2. The USP5-IMPDH2 axis promoted HCC proliferation, and metastasis mediated by epithelial-mesenchymal transition (EMT) process in HCC cells and Huh7 xenograft tumors in zebrafish. Notably, GTP biosynthesis pathway was involved in HCC progression induced by USP5. Furthermore, administration of WP1130, a USP5 inhibitor, or IMPDH2 reduction by shRNA facilitated the tumor-suppressive role of sorafenib in HCC cells and Huh7 xenograft tumors in nude mice. Together, we identified IMPDH2 as a substrate of USP5, which participates in USP5 induced promotion of HCC progression. Targeting the USP5-IMPDH2 axis might offer potential therapeutic benefits for patients with HCC.
Collapse
Affiliation(s)
- Shuoyi Jiang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Liyang Jiang
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215006, Jiangsu, China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215000, Jiangsu, China
| | - Yingying Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Yunju Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yiran Deng
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Can Jiao
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Min Yin
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chao Qin
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jiale Li
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Li Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
2
|
Wang J, Fang S, Jiang Y, Hua Q. Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors. Clin Med Insights Oncol 2024; 18:11795549241281932. [PMID: 39391229 PMCID: PMC11465303 DOI: 10.1177/11795549241281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5), a member of the ubiquitin-specific proteases (USPs) family, functions by specifically removing ubiquitin chains from target proteins for stabilization and degrading unbound polyubiquitin chains to maintain a steady-state monoubiquitin pool. Ubiquitin-specific protease 5 regulates various cellular activities, including DNA double-strand break repair, transmission of neuropathic and inflammatory pain signals, immune response, and tumor cell proliferation. Furthermore, USP5 is involved in the development of multiple tumors such as liver, lung, pancreatic, and breast cancers as well as melanoma. Downstream regulatory mechanisms associated with USP5 are complex and diverse. Ubiquitin-specific protease 5 has been revealed as an emerging target for tumor treatment. This study has introduced some molecules upstream to control the expression of USP5 at the levels of transcription, translation, and post-translation. Furthermore, the study incorporated inhibitors known to be associated with USP5, including partially selective deubiquitinase (DUB) inhibitors such as WP1130, EOAI3402143, vialinin A, and chalcone derivatives. It also included the ubiquitin-activating enzyme E1 inhibitor, PYR-41. These small molecule inhibitors impact the occurrence and development of various tumors. Therefore, this article comprehensively reviews the pivotal role of USP5 in different signaling pathways during tumor progression and resumes the progress made in developing USP5 inhibitors, providing a theoretical foundation for their clinical translation.
Collapse
Affiliation(s)
| | | | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Gu J, Chen C, He P, Du Y, Zhu B. Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy. Biomolecules 2024; 14:683. [PMID: 38927085 PMCID: PMC11201890 DOI: 10.3390/biom14060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation.
Collapse
Affiliation(s)
- Jinyi Gu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
- Clinical Laboratory, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Pu He
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| |
Collapse
|
4
|
Bolhuis DL, Emanuele MJ, Brown NG. Friend or foe? Reciprocal regulation between E3 ubiquitin ligases and deubiquitinases. Biochem Soc Trans 2024; 52:241-267. [PMID: 38414432 PMCID: PMC11349938 DOI: 10.1042/bst20230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Protein ubiquitination is a post-translational modification that entails the covalent attachment of the small protein ubiquitin (Ub), which acts as a signal to direct protein stability, localization, or interactions. The Ub code is written by a family of enzymes called E3 Ub ligases (∼600 members in humans), which can catalyze the transfer of either a single ubiquitin or the formation of a diverse array of polyubiquitin chains. This code can be edited or erased by a different set of enzymes termed deubiquitinases (DUBs; ∼100 members in humans). While enzymes from these distinct families have seemingly opposing activities, certain E3-DUB pairings can also synergize to regulate vital cellular processes like gene expression, autophagy, innate immunity, and cell proliferation. In this review, we highlight recent studies describing Ub ligase-DUB interactions and focus on their relationships.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Care Center, UNC Chapel Hill School of Medicine, Chapel Hill, NC, 27599
| |
Collapse
|
5
|
Gao ST, Xin X, Wang ZY, Hu YY, Feng Q. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Mol Cell Probes 2024; 73:101944. [PMID: 38049041 DOI: 10.1016/j.mcp.2023.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
6
|
Salimi R, Naderi R, Shirpoor A. Involvement of miR-27a/smurf1/ TNF-α and mitochondrial apoptotic pathway in apoptosis induced by cerebral ischemia-reperfusion injury in rats: The protective effect of chlorogenic acid. Neurosci Lett 2023; 817:137529. [PMID: 37871828 DOI: 10.1016/j.neulet.2023.137529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
AIMS Apoptosis may contribute to a considerable proportion of neuron death after acute cerebral ischemia, although the underlying mechanisms remain unknown. The purpose of this research is to investigate the effect of cerebral ischemia-reperfusion on miR-27a/smurf1 axis in rat cerebral cortex alone and in combination with chlorogenic acid. METHODS To create a model of ischemic brain injury, nylon monofilament occlusion of the common carotid artery (CCAO) was used for 20 min. Chlorogenic acid (30 mg/kg) was given intraperitoneally (ip) 10 min before ischemia and 10 min before reperfusion. RESULTS TUNEL staining of cerebral cortex neurons revealed an increase in the number of apoptotic neurons 24 h after reperfusion. At the molecular level, IR damage lowered bcl2 protein expression while simultaneously increasing bax levels and the bax/bcl2 ratio. Also, we observed higher miR-27a gene expression and higher TNF-α protein level as well as lower smurf1 protein expression after 24 h following CCAO. Treatment with chlorogenic acid significantly reduced the apoptotic damage and reversed molecular alterations in cerebral cortex neurons after IR. CONCLUSION Our findings indicate that miR-27a/smurf1/TNF-α axis may play a regulatory function in cerebral cortex cell death, providing a new target for novel therapeutic approaches during transit ischemic stroke. It was also shown that chlorogenic acid could restore these molecular changes, demonstrating that it is an effective agent against cerebral cortex apoptotic damage after acute IR injury.
Collapse
Affiliation(s)
- Rahil Salimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Alireza Shirpoor
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Souza-Costa LP, Andrade-Chaves JT, Andrade JM, Costa VV, Franco LH. Uncovering new insights into the role of the ubiquitin ligase Smurf1 on the regulation of innate immune signaling and resistance to infection. Front Immunol 2023; 14:1185741. [PMID: 37228615 PMCID: PMC10203584 DOI: 10.3389/fimmu.2023.1185741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
Innate immunity is the body's first line of defense against infections. Innate immune cells express pattern recognition receptors in distinct cellular compartments that are responsible to detect either pathogens-associated molecules or cellular components derived from damaged cells, to trigger intracellular signaling pathways that lead to the activation of inflammatory responses. Inflammation is essential to coordinate immune cell recruitment, pathogen elimination and to keep normal tissue homeostasis. However, uncontrolled, misplaced or aberrant inflammatory responses could lead to tissue damage and drive chronic inflammatory diseases and autoimmunity. In this context, molecular mechanisms that tightly regulate the expression of molecules required for the signaling of innate immune receptors are crucial to prevent pathological immune responses. In this review, we discuss the ubiquitination process and its importance in the regulation of innate immune signaling and inflammation. Then, we summarize the roles of Smurf1, a protein that works on ubiquitination, on the regulation of innate immune signaling and antimicrobial mechanisms, emphasizing its substrates and highlighting its potential as a therapeutic target for infectious and inflammatory conditions.
Collapse
Affiliation(s)
- Luiz Pedro Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Josiane Teixeira Andrade-Chaves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juvana Moreira Andrade
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luis Henrique Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Zhong W, Feng L, Tian W, Qu H, Xu H, Ning K, Liu L, Liu W, Gong X, Chen H. SMURF1 inhibits the Th17 and Th17.1 polarization and improves the Treg/Th17 imbalance in systemic lupus erythematosus through the ubiquitination of RORγt. Mol Immunol 2023; 157:186-194. [PMID: 37054520 DOI: 10.1016/j.molimm.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 04/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease. This study aimed to investigate the role of SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) in the Th17 and Th17.1 differentiation and Treg/Th17 imbalance, which are major factors contributing to the pathogenesis of SLE. SLE patients and healthy individuals were recruited to detect the SMURF1 levels in naïve CD4+ cells from peripheral blood. Purified and expanded naïve CD4+ T cells were employed to evaluate the effects of SMURF1 on Th17 and Th17.1 polarization in vitro. MRL/lpr lupus model was employed to explore the disease phenotype as well as Treg/Th17 balance in vivo. The results showed that SMURF1 was down-regulated in naïve CD4+ T cells in peripheral blood of patients with SLE and in spleen of MRL/lpr mice. SMURF1 overexpression suppressed the polarization of naïve CD4+ T cells toward Th17 and Th17.1 phenotype and down-regulated the expression of retinoid-related orphan receptor-gammat (RORγt). Subsequently, SMURF1 down-regulation aggravated the disease phenotype, inflammation, and the Treg/Th17 imbalance in MRL/lpr mice. Furthermore, we found that SMURF overexpression promoted the ubiquitination and decreases the stability of RORγt. In conclusion, SMURF1 inhibited the polarization of Th17 and Th17.1 cells and improved the Treg/Th17 imbalance in SLE, which was mediated as least partly by the ubiquitination of RORγt.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Leheng Feng
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Wei Tian
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Hongbo Qu
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Haibo Xu
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China; Department of Endocrinology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China
| | - Ke Ning
- Department of International Medical Service, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province, PR China
| | - Li Liu
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China; Department of Imaging, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China
| | - Wei Liu
- Department of Rheumatology and Immunology, Qinhuangdao Jungong Hospital, Qinhuangdao City, Hebei Province, PR China
| | - Xiaowei Gong
- Department of Rheumatology and Immunology, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China
| | - Hong Chen
- Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar City, Heilongjiang Province, PR China; TCM Geriatric Department, The First Hospital of Qiqihar, Qiqihar City, Heilongjiang Province, PR China; Heilongjiang Academy of Traditional Chinese Medicine, Harbin City, Heilongjiang Province, PR China.
| |
Collapse
|
9
|
Gupta R, Kumar P. CREB1 K292 and HINFP K330 as Putative Common Therapeutic Targets in Alzheimer's and Parkinson's Disease. ACS OMEGA 2021; 6:35780-35798. [PMID: 34984308 PMCID: PMC8717564 DOI: 10.1021/acsomega.1c05827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 05/16/2023]
Abstract
Integration of omics data and deciphering the mechanism of a biological regulatory network could be a promising approach to reveal the molecular mechanism involved in the progression of complex diseases, including Alzheimer's and Parkinson's. Despite having an overlapping mechanism in the etiology of Alzheimer's disease (AD) and Parkinson's disease (PD), the exact mechanism and signaling molecules behind them are still unknown. Further, the acetylation mechanism and histone deacetylase (HDAC) enzymes provide a positive direction toward studying the shared phenomenon between AD and PD pathogenesis. For instance, increased expression of HDACs causes a decrease in protein acetylation status, resulting in decreased cognitive and memory function. Herein, we employed an integrative approach to analyze the transcriptomics data that established a potential relationship between AD and PD. Data preprocessing and analysis of four publicly available microarray datasets revealed 10 HUB proteins, namely, CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93, that may be involved in the shared mechanism of AD and PD pathogenesis. Further, we identified the relationship between the HUB proteins and transcription factors that could be involved in the overlapping mechanism of AD and PD. CREB1 and HINFP were the crucial regulatory transcription factors that were involved in the AD and PD crosstalk. Further, lysine acetylation sites and HDAC enzyme prediction revealed the involvement of 15 and 27 potential lysine residues of CREB1 and HINFP, respectively. Our results highlighted the importance of HDAC1(K292) and HDAC6(K330) association with CREB1 and HINFP, respectively, in the AD and PD crosstalk. However, different datasets with a large number of samples and wet lab experimentation are required to validate and pinpoint the exact role of CREB1 and HINFP in the AD and PD crosstalk. It is also possible that the different datasets may or may not affect the results due to analysis parameters. In conclusion, our study potentially highlighted the crucial proteins, transcription factors, biological pathways, lysine residues, and HDAC enzymes shared between AD and PD at the molecular level. The findings can be used to study molecular studies to identify the possible relationship in the AD-PD crosstalk.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and
Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and
Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| |
Collapse
|
10
|
Li G, Yang T, Chen Y, Bao J, Wu D, Hu X, Feng C, Xu L, Li M, Li G, Jin M, Xu Y, Zhang R, Qian G, Pan J. USP5 Sustains the Proliferation of Glioblastoma Through Stabilization of CyclinD1. Front Pharmacol 2021; 12:720307. [PMID: 34483932 PMCID: PMC8415357 DOI: 10.3389/fphar.2021.720307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant primary tumors in humans. Despite standard therapeutic strategy with tumor resection combined with radiochemotherapy, the prognosis remains disappointed. Recently, deubiquitinating enzymes (DUBs) has been reported as potential cancer therapy targets due to their multifunctions involved in the regulation of tumorigenesis, cell cycle, apoptosis, and autophagy. In this study, we found that knockdown of ubiquitin specific protease (USP5), a family member of DUB, could significantly suppress GBM cell line U251 and DBTRG-05MG proliferation and colony formation by inducing cell cycle G1/S arrest, which was correlated with downregulation of CyclinD1 protein level. CyclinD1 had been reported to play a critical role in the tumorigenesis and development of GBM via regulating cell cycle transition. Overexpression of USP5 could significantly extend the half-life of CyclinD1, while knockdown of USP5 decreased the protein level of CyclinD1, which could be restored by proteasome inhibitor MG-132. Indeed, USP5 was found to directly interact with CyclinD1, and decrease its K48-linked polyubiquitination level. Furthermore, knockdown of USP5 in U251 cells remarkably inhibited tumor growth in vivo. Taken together, these findings demonstrate that USP5 plays a critical role in tumorigenesis and progression of GBM by stabilizing CyclinD1 protein. Targeting USP5 could be a potential therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yanling Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Jianping Bao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Meifang Jin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Rui Zhang
- Clinical Pediatrics School, Soochow University, Suzhou, China
| | - Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Nielsen CP, MacGurn JA. Coupling Conjugation and Deconjugation Activities to Achieve Cellular Ubiquitin Dynamics. Trends Biochem Sci 2020; 45:427-439. [PMID: 32311336 DOI: 10.1016/j.tibs.2020.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, proteome remodeling is mediated by the ubiquitin-proteasome system, which regulates protein degradation, trafficking, and signaling events in the cell. Interplay between the cellular proteome and ubiquitin is complex and dynamic and many regulatory features that support this system have only recently come into focus. An unexpected recurring feature in this system is the physical interaction between E3 ubiquitin ligases and deubiquitylases (DUBs). Recent studies have reported on the regulatory significance of DUB-E3 interactions and it is becoming clear that they play important but complicated roles in the regulation of diverse cellular processes. Here, we summarize the current understanding of interactions between ubiquitin conjugation and deconjugation machineries and we examine the regulatory logic of these enigmatic complexes.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Ning F, Xin H, Liu J, Lv C, Xu X, Wang M, Wang Y, Zhang W, Zhang X. Structure and function of USP5: Insight into physiological and pathophysiological roles. Pharmacol Res 2019; 157:104557. [PMID: 31756387 DOI: 10.1016/j.phrs.2019.104557] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022]
Abstract
Deubiquitinase (DUB)-mediated cleavage of ubiquitin chains from substrate proteins plays a crucial role in various cellular processes, such as DNA repair and protein stabilization and localization. DUBs can be classified into five families based on their sequence and structural homology, and the majority belong to the ubiquitin-specific proteinase (USP) family. As one of the USPs, ubiquitin-specific proteinase 5 (USP5) is unique in that it can specifically recognize unanchored (not conjugated to target proteins) polyubiquitin and is essential for maintaining homeostasis of the monoubiquitin pool. USP5 has also been implicated in a wide variety of cellular events. In the present review, we focus on USP5 and provide a comprehensive overview of the current knowledge regarding its structure, physiological roles in multiple cellular events, and pathophysiological roles in relevant diseases, especially cancer. Signaling pathways and emerging pharmacological profiles of USP5 are also introduced, which fully embody the therapeutic potential of USP5 for human diseases ranging from cancer to neurological diseases.
Collapse
Affiliation(s)
- Fengling Ning
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chao Lv
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Xu
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215123, China
| | - Mengling Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yinhang Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
13
|
Shao L, Liu X, Zhu S, Liu C, Gao Y, Xu X. The Role of Smurf1 in Neuronal Necroptosis after Lipopolysaccharide-Induced Neuroinflammation. Cell Mol Neurobiol 2018; 38:809-816. [PMID: 28940129 PMCID: PMC11481904 DOI: 10.1007/s10571-017-0553-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
The role of inflammation in neurological disorders such as Alzheimer's disease and Parkinson's disease is gradually recognized and leads to an urgent challenge. Smad ubiquitination regulatory factor 1 (Smurf1), one member of the HECT family, is up-regulated by proinflammatory cytokines and associated with apoptosis in acute spinal cord injury. However, the function of Smurf1 through promoting neuronal necroptosis is still limited in the central nervous system (CNS). Hence, we developed a neuroinflammatory model in adult rats following lipopolysaccharide (LPS) lateral ventral injection to elaborate whether Smurf1 is involved in necroptosis in CNS injury. The up-regulation of Smurf1 detected in the rat brain cortex was similar to the necroptotic marker RIP1 expression in a time-dependent manner after LPS-induced neuroinflammation. Meanwhile, Smurf1 knockdown with siRNA inhibited neuronal necroptosis following LPS-stimulated rat pheochromocytomal PC12 cells. Thus, it was indicated that LPS-induced necroptosis could be promoted by Smurf1. In short, these studies suggest that Smurf1 might promote neuronal necroptosis after LPS-induced neuroinflammation, which might act as a novel and potential molecular target for the treatment of neuroinflammation associated diseases.
Collapse
Affiliation(s)
- Lifei Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, China
| | - Shunxing Zhu
- Experimental Animal Center, Nantong University, Nantong, Jiangsu, 226001, China
| | - Chun Liu
- Experimental Animal Center, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yilu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xide Xu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
14
|
Smurf1 restricts the antiviral function mediated by USP25 through promoting its ubiquitination and degradation. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|