1
|
Akram F, Ul Haq I, Mir AS. Gene cloning, IPTG-independent auto-induction and characterization of a novel hyperstable S9 prolyl oligopeptidase having lipolytic activity from Thermotoga naphthophila RKU-10 T with applications. Int J Biol Macromol 2024; 279:135107. [PMID: 39197610 DOI: 10.1016/j.ijbiomac.2024.135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
A hyperstable lipase from Thermotoga naphthophila (TnLip) was cloned and overexpressed as a soluble and active monomeric protein in an effectual mesophilic host system. Sequence study revealed that TnLip is a peptidase S9 prolyl oligopeptidase domain (acetyl esterase/lipase-like protein), belongs to alpha/beta (α/β)-hydrolase superfamily containing a well-conserved α/β-hydrolase fold and penta-peptide (GLSAG) motif. Various cultivation and induction strategies were applied to improve the heterologous expression and bacterial biomass, but TnLip intracellular activity was enhanced by 14.25- fold with IPTG-independent auto-induction approach after 16 h (26 °C, 150 rev min-1) incubation. Purified TnLip (35 kDa) showed peak activity at 85 °C in McIlvaine buffer (pH 7.0-8.0), and has great stability over a broad range of pH (5.0-10.0), and temperature (40-85 °C) for 8 h. TnLip exhibited prodigious resistance toward various commercial detergents, chemical additives, and salt. TnLip activity was improved by 170.51 %, 130.67 %, 127.42 %, 126.54 %, 126.61 %, 120.32 %, and 116.31 % with 50 % (v/v) of methanol, ethanol, n-butanol, isopropanol, acetone, glycerol, and acetic acid, respectively. Moreover, with 3.0 M of NaCl, and 10 mM of Ca2+, Mn2+, and Mg2+ TnLip activity was augmented by 210 %, 185.64 %, 152.03 %, and 116.26 %, respectively. TnLip has an affinity with various substrates (p-nitrophenyl ester and natural oils) but maximal hydrolytic activity was perceived with p-nitrophenyl palmitate (pNPP, 3600 U mg-1) and olive oil (1182.05 U mg-1). The values of Km (0.576 mM), Vmax (4216 μmol mg-1 min-1), VmaxKm-1 (7319.44 min-1), kcat (1106.74 s-1), and kcatKm-1 (1921.42 mM-1 s-1) were calculated using pNPP substrate. Additionally, TnLip degraded animals' fats and removed oil stains within 3 h and 5 min, respectively. All these features make halo-alkali-thermophilic TnLip as an auspicious contender for laundry detergents (cleaning bio-additive), fat degradation, wastewater treatment and endorse eco-friendly stewardship along with various other biotechnological applications.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Ikram Ul Haq
- Dr. Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Azka Shahzad Mir
- Dr. Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
2
|
Akram F, Fatima T, Ul Haq I. Auto-induction, biochemical characterization and application of a novel thermo-alkaline and detergent-stable lipase (S9 peptidase domain) from Thermotoga petrophila as cleaning additive and degrading oil/fat wastes. Bioorg Chem 2024; 151:107658. [PMID: 39033546 DOI: 10.1016/j.bioorg.2024.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
A peptidase S9 prolyl oligopeptidase domain from Thermotoga petrophila RKU-1T (TpS9) was over-expressed as an active, soluble and hyperstable lipolytic enzyme in the mesophilic host system. The sequence analysis demonstrated, TpS9 is an esterase/lipase-like protein belongs to alpha/beta (α/β)-hydrolase superfamily with a well-conserved penta-peptide (GLSAG) motif and α/β-hydrolase fold. Various approaches (induction and cultivation) were employed to enrich TpS9 production, 6.04- and 7.26-fold increment was observed with IPTG (0.4 mM) and lactose (200 mM) in the modified 4ZB medium (pH 7.0), but with IPTG-independent auto-induction strategy 9.02-fold augmentation was achieved after 16 h incubation at 24 °C (150 rev min-1). Purified TpS9 showed optimal activity in McIlvaine buffer (pH 6.5) at 80-85 °C, and revealed great thermal (30-85 °C) and pH (6.0-9.0) for 8 h. No obvious constraint was perceived with various metal ions, surfactants, commercial laundry detergents, and chemical modulators. Whereas, TpS9 activity was improved with Ca2+, Mn2+, and Mg2+ by 210 %, 142.5 %, and 134.3 %, respectively. With 2.5 M NaCl (215 %), 50 % (v/v) methanol (140 %), 50 % (v/v) ethanol (126.6 %), 50 % (v/v) n-butanol (122.3 %), 50 % (v/v) isopropanol (120.4 %), 50 % (v/v) acetone (118.6 %) and 50 % (v/v) glycerol (113.2 %) TpS9 activity was also enriched. TpS9 demonstrated great affinity toward natural oils and p-nitrophenyl ester substrates, but showed peak activity with p-nitrophenyl palmitate (3160 U mg-1). Km, Vmax, kcat, Vmax Km-1 and kcat Km-1 of TpS9 with pNPP were 0.421 mM, 4015 µmol mg-1 min-1, 906.4 s-1, 9536.8 min-1, and 2152.96 mM-1 s-1, respectively. Moreover, TPS9 has notable ability to clean stains (5 min) and degrade the animals' fat (3 h). Hence, TpS9 is a favorable candidate as cleaning bio-additive in detergent formulation, fat degradation and various other applications.
Collapse
Affiliation(s)
- Fatima Akram
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan; Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | - Taseer Fatima
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram Ul Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
3
|
Mundra S, Kabra A. Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential. Biomolecules 2024; 14:668. [PMID: 38927071 PMCID: PMC11202043 DOI: 10.3390/biom14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
Collapse
Affiliation(s)
- Surbhi Mundra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Mazurkewich S, Poulsen JCN, Lo Leggio L, Larsbrink J. Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components. J Biol Chem 2019; 294:19978-19987. [PMID: 31740581 PMCID: PMC6937553 DOI: 10.1074/jbc.ra119.011435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact and catalyze degradation of their natural substrates are sparse, calling for thorough enzyme structure-function studies. Presented here is a structural and mechanistic investigation of the bacterial GE OtCE15A. GEs belong to the carbohydrate esterase family 15 (CE15), which is in turn part of the larger α/β-hydrolase superfamily. GEs contain a Ser-His-Asp/Glu catalytic triad, but the location of the catalytic acid in GEs has been shown to be variable, and OtCE15A possesses two putative catalytic acidic residues in the active site. Through site-directed mutagenesis, we demonstrate that these residues are functionally redundant, possibly indicating the evolutionary route toward new functionalities within the family. Structures determined with glucuronate, in both native and covalently bound intermediate states, and galacturonate provide insights into the catalytic mechanism of CE15. A structure of OtCE15A with the glucuronoxylooligosaccharide 23-(4-O-methyl-α-d-glucuronyl)-xylotriose (commonly referred to as XUX) shows that the enzyme can indeed interact with polysaccharides from the plant cell wall, and an additional structure with the disaccharide xylobiose revealed a surface binding site that could possibly indicate a recognition mechanism for long glucuronoxylan chains. Collectively, the results indicate that OtCE15A, and likely most of the CE15 family, can utilize esters of glucuronoxylooligosaccharides and support the proposal that these enzymes work on lignin-carbohydrate complexes in plant biomass.
Collapse
Affiliation(s)
- Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
6
|
Wang Y, Le LTHL, Yoo W, Lee CW, Kim KK, Lee JH, Kim TD. Characterization, immobilization, and mutagenesis of a novel cold-active acetylesterase (EaAcE) from Exiguobacterium antarcticum B7. Int J Biol Macromol 2019; 136:1042-1051. [PMID: 31229546 DOI: 10.1016/j.ijbiomac.2019.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022]
Abstract
Cold-active enzymes with distinctive properties from a psychrophilic Exiguobacterium antarcticum B7 could be excellent biocatalysts in industrial and biotechnological processes. Here, the characterization, immobilization, and site-directed mutagenesis of a novel cold-active acetylesterase (EaAcE) from E. antarcticum B7 is reported. EaAcE does not belong to any currently known lipase/esterase family, although there are some sequence similarities with family III and V members. Biochemical characterization of EaAcE was carried out using activity staining, mass spectrometry analysis, circular dichroism spectra, freeze-thaw experiments, kinetic analysis, acetic acid release assays, and enantioselectivity determination. Furthermore, immobilization of EaAcE using four different approaches was explored to enhance its thermal stability and recyclability. Based on a homology model of EaAcE, four mutations (F45A, S118A, S141A, and T216A) within the substrate-binding pocket were investigated to elucidate their roles in EaAcE catalysis and substrate specificity. This work has provided invaluable information on the properties of EaAcE, which can now be used to understand the acetylesterase enzyme family.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea; Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon, Republic of Korea
| | - T Doohun Kim
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.
| |
Collapse
|
7
|
Crystal structure and functional characterization of a cold-active acetyl xylan esterase (PbAcE) from psychrophilic soil microbe Paenibacillus sp. PLoS One 2018; 13:e0206260. [PMID: 30379876 PMCID: PMC6209228 DOI: 10.1371/journal.pone.0206260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Cold-active acetyl xylan esterases allow for reduced bioreactor heating costs in bioenergy production. Here, we isolated and characterized a cold-active acetyl xylan esterase (PbAcE) from the psychrophilic soil microbe Paenibacillus sp. R4. The enzyme hydrolyzes glucose penta-acetate and xylan acetate, reversibly producing acetyl xylan from xylan, and it shows higher activity at 4°C than at 25°C. We solved the crystal structure of PbAcE at 2.1-Å resolution to investigate its active site and the reason for its low-temperature activity. Structural analysis showed that PbAcE forms a hexamer with a central substrate binding tunnel, and the inter-subunit interactions are relatively weak compared with those of its mesophilic and thermophilic homologs. PbAcE also has a shorter loop and different residue composition in the β4–α3 and β5–α4 regions near the substrate binding site. Flexible subunit movements and different active site loop conformations may enable the strong low-temperature activity and broad substrate specificity of PbAcE. In addition, PbAcE was found to have strong activity against antibiotic compound substrates, such as cefotaxime and 7-amino cephalosporanic acid (7-ACA). In conclusion, the PbAcE structure and our biochemical results provide the first example of a cold-active acetyl xylan esterase and a starting template for structure-based protein engineering.
Collapse
|
8
|
Adesioye FA, Makhalanyane TP, Vikram S, Sewell BT, Schubert WD, Cowan DA. Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family. Appl Environ Microbiol 2018; 84:e02695-17. [PMID: 29453256 PMCID: PMC5881061 DOI: 10.1128/aem.02695-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/04/2023] Open
Abstract
A hot desert hypolith metagenomic DNA sequence data set was screened in silico for genes annotated as acetyl xylan esterases (AcXEs). One of the genes identified encoded an ∼36-kDa protein (Axe1NaM1). The synthesized gene was cloned and expressed, and the resulting protein was purified. NaM1 was optimally active at pH 8.5 and 30°C and functionally stable at salt concentrations of up to 5 M. The specific activity and catalytic efficiency were 488.9 U mg-1 and 3.26 × 106 M-1 s-1, respectively. The crystal structure of wild-type NaM1 was solved at a resolution of 2.03 Å, and a comparison with the structures and models of more thermostable carbohydrate esterase 7 (CE7) family enzymes and variants of NaM1 from a directed evolution experiment suggests that reduced side-chain volume of protein core residues is relevant to the thermal stability of NaM1. Surprisingly, a single point mutation (N96S) not only resulted in a simultaneous improvement in thermal stability and catalytic efficiency but also increased the acyl moiety substrate range of NaM1.IMPORTANCE AcXEs belong to nine carbohydrate esterase families (CE1 to CE7, CE12, and CE16), of which CE7 enzymes possess a unique and narrow specificity for acetylated substrates. All structurally characterized members of this family are moderately to highly thermostable. The crystal structure of a novel, mesophilic CE7 AcXE (Axe1NaM1), from a soil metagenome, provides a basis for comparisons with thermostable CE7 enzymes. Using error-prone PCR and site-directed mutagenesis, we enhanced both the stability and activity of the mesophilic AcXE. With comparative structural analyses, we have also identified possible thermal stability determinants. These are valuable for understanding the thermal stability of enzymes within this family and as a guide for future protein engineering of CE7 and other α/β hydrolase enzymes.
Collapse
Affiliation(s)
- Fiyinfoluwa A Adesioye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Bryan T Sewell
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Singh MK, Shivakumaraswamy S, Gummadi SN, Manoj N. Role of an N-terminal extension in stability and catalytic activity of a hyperthermostable α/β hydrolase fold esterase. Protein Eng Des Sel 2017; 30:559-570. [PMID: 28967962 DOI: 10.1093/protein/gzx049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
The carbohydrate esterase family 7 (CE7) enzymes catalyze the deacetylation of acetyl esters of a broad range of alcohols and is unique in its activity towards cephalosporin C. The CE7 fold contains a conserved N-terminal extension that distinguishes it from the canonical α/β hydrolase fold. The hexameric quaternary structure indicates that the N-terminus may affect activity and specificity by controlling access of substrates to the buried active sites via an entrance tunnel. In this context, we characterized the catalytic parameters, conformation and thermal stability of two truncation variants lacking four and ten residues of the N-terminal region of the hyperthermostable Thermotoga maritima CE7 acetyl esterase (TmAcE). The truncations did not affect the secondary structure or the fold but modulated the oligomerization dynamics. A modest increase was observed in substrate specificity for acetylated xylose compared with acetylated glucose. A drastic reduction of ~30-40°C in the optimum temperature for activity of the variants indicated lower thermal stability. The loss of hyperthermostability appears to be an indirect effect associated with an increase in the conformational flexibility of an otherwise rigid neighboring loop containing a catalytic triad residue. The results suggest that the N-terminal extension was evolutionarily selected to preserve the stability of the enzyme.
Collapse
Affiliation(s)
- Mrityunjay K Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Santosh Shivakumaraswamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Sathyanarayana N Gummadi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Singh MK, Manoj N. Structural role of a conserved active sitecisproline in theThermotoga maritimaacetyl esterase from the carbohydrate esterase family 7. Proteins 2017; 85:694-708. [DOI: 10.1002/prot.25249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/17/2016] [Accepted: 01/04/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Mrityunjay K. Singh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 Tamil Nadu India
| |
Collapse
|