1
|
Choi JY, Choi CY. Gonadotropin-releasing hormone-independent effects of recombinant vertebrate ancient long opsin in the goldfish Carassius auratus reveal alternative reproduction pathways. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1219-1227. [PMID: 32146552 DOI: 10.1007/s10695-020-00784-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Vertebrate ancient long (VAL)-opsin is a green-sensitive photoreceptor that shows high sequence similarity to vertebrate ancient opsin, which is considered to play a role in sexual maturation via gonadotropin-releasing hormone (GnRH); however, the role of VAL-opsin in vertebrate sexual maturity remains unclear. Therefore, we investigated the possible role of VAL-opsin in reproduction in the goldfish Carassius auratus under a state of GnRH inhibition. Goldfish were injected with recombinant VAL-opsin protein (0.5 μg/g body mass) and/or the GnRH antagonist cetrorelix (0.5 μg/fish), and changes in the mRNA expression levels of genes associated with goldfish reproduction were measured by quantitative polymerase chain reaction, including those involved in the hypothalamus-pituitary-gonad (HPG) axis, VAL-opsin, GnRH, the gonadotropins (GTHs) luteinizing hormone and follicle-stimulating hormone, and estrogen receptor (ER). Moreover, the fish were irradiated with a green light-emitting diode (520 nm) to observe the synergistic effect on the HPG axis with VAL-opsin. Green LED exposure significantly and slightly increased the VAL-opsin and GnRH levels, respectively; however, these effects were blocked in groups injected with cetrorelix at all time points. Cetrorelix significantly decreased the mRNA levels of GTHs and ER, whereas these hormones recovered by co-treatment with VAL-opsin. These results indicate that green LED is an effective light source to promote the expression of sex hormones in fish. Moreover, VAL-opsin not only affects activity of the HPG axis but also appears to act on the pituitary gland directly to stimulate a new sexual maturation pathway that promotes the secretion of GTHs independent of GnRH.
Collapse
Affiliation(s)
- Ji Yong Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| |
Collapse
|
2
|
Choi SH, Kim BH, Hur SP, Lee CH, Lee YD. Effects of Different Light Spectra on the Oocyte Maturation in Grass Puffer Takifugu niphobles. Dev Reprod 2018; 22:175-182. [PMID: 30023467 PMCID: PMC6048305 DOI: 10.12717/dr.2018.22.2.175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 11/24/2022]
Abstract
In order to examine the effects of four different light spectra (white, red, green, and blue) on the oocyte maturation, the change of reproductive parameters, via brain-pituitary-gonad (BPG) axis in grass puffer, were investigated. After exposure four different light spectra for 7 weeks, the abundance of gonadotropin-releasing hormone (GnRH) mRNA which is a type of seabream (sbGnRH) and two different subunit of gonadotropin hormones mRNAs, follicle-stimulating hormone (fshβ) mRNA and luteinizing hormone (lhβ) mRNA, were analyzed in the brain and pituitary. Histological analysis showed that the mature oocyte ratio in the green spectrum was higher than other light spectra-exposed groups. Gonadosomatic index (GSI) and oocyte developmental stage were also investigated in the gonad based on histological observations. GSI value with the presence of yolk stage oocytes was significantly increased in the green spectrum-exposed group when compared to that of the other light-exposed groups (white, red, and blue) (p˂0.05). The abundances of sbGnRH mRNA and fshβ mRNA in the green spectrum-exposed group were also significant higher than those of the other light spectra-exposed groups (p˂0.05). These results indicate that the maturation of oocyte in grass puffer can be accelerated by exposure to the spectrum of green. To better understand the molecular mechanism for the maturation of oocyte in grass puffer, further study examining the relationship between oocyte development and its related genes is required.
Collapse
Affiliation(s)
- Song-Hee Choi
- Marine Science Institute, Jeju National
University, Jeju 63333, Korea
| | - Byeong-Hoon Kim
- Marine Science Institute, Jeju National
University, Jeju 63333, Korea
| | - Sung-Pyo Hur
- Jeju International Marine Science Research
& Logistics Center, Korea Institute of Ocean Science &
Technology, Jeju 63349, Korea
| | | | - Young-Don Lee
- Marine Science Institute, Jeju National
University, Jeju 63333, Korea
| |
Collapse
|
3
|
Lopes ACC, Villacorta-Correa MA, Carvalho TB. Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus. Behav Processes 2018; 151:62-66. [DOI: 10.1016/j.beproc.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 11/27/2022]
|
4
|
Li F, Qiao H, Fu H, Sun S, Zhang W, Jin S, Jiang S, Gong Y, Xiong Y, Wu Y, Hu Y, Shan D. Identification and characterization of opsin gene and its role in ovarian maturation in the oriental river prawn Macrobrachium nipponense. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:1-12. [PMID: 29309912 DOI: 10.1016/j.cbpb.2017.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Opsins are photoreceptors with important roles in reproductive regulation in birds and fishes. In the present study, we identified an opsin gene from the eyes of the oriental river prawn Macrobrachium nipponense using expressed sequence tag analysis and rapid amplification of cDNA ends. The full-length transcript contained 1382 base pairs, encoding 375 amino acids. It was classified into the long-wavelength opsin group by phylogenetic analysis, and designated Mn-LW. Mn-LW expression demonstrated significant seasonal variation in somatic tissues from both male and female prawns, with the highest expression in the eyes, and expression also shown in the ovary. The expression profiles of Mn-LW in eyes and ovary were positively related to ovarian development. In situ hybridization showed that Mn-LW was present in retinular cells in the eye and oocytes in the ovary. Injection of Mn-LW dsRNA in vivo effectively down-regulated Mn-LW expression levels compared with control levels. Mn-LW dsRNA injection also significantly reduced vitellogenin (Vg) expression, indicating a close relationship between Mn-LW and Vg in ovarian development. These results suggest that Mn-LW may play an important role in Vg synthesis and accumulation during ovarian maturation in M. nipponense.
Collapse
Affiliation(s)
- Fei Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Hongtuo Fu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yuning Hu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Dongyan Shan
- Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|