1
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Wang Z, Ren L, Li Z, Qiu Q, Wang H, Huang X, Ma D. Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells. Stem Cells Int 2025; 2025:5551222. [PMID: 39980864 PMCID: PMC11842143 DOI: 10.1155/sci/5551222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.
Collapse
Affiliation(s)
- Zixin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhengtao Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qingyuan Qiu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Haonan Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
3
|
Zhang C, Chang Y, Shu L, Chen Z. Pathogenesis of thoracic ossification of the ligamentum flavum. Front Pharmacol 2024; 15:1496297. [PMID: 39545059 PMCID: PMC11560781 DOI: 10.3389/fphar.2024.1496297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is characterized by ectopic ossification of the ligamentum flavum in the thoracic spine and is considered the main cause of thoracic spinal stenosis and spinal cord disease. Osteoblast specific transcription factor Osterix (Osx) is required for bone formation, and there is no bone formation or ossification without Osx. Surgical intervention is recognized as the only effective method for TOLF treatment with set of complications. However, underlying mechanisms of TOLF are not well understood. This paper summarizes the pathogenesis of TOLF. Some relevant factors have been discussed, such as mechanical stress, genetic susceptibility genes, endocrine and trace element metabolism abnormalities, which may associate with TOLF. More recent studies using proteomics technology and RNA sequencing approach have discovered that some new factors participate in TOLF by upregulation of Osx gene expression including inflammatory factors. TOLF is a unique disease involving multiple factors. On the other hand, studies on TOLF pathogenic mechanism may provide new ideas for finding possible upstream regulatory factors of Osx and further developing novel drugs to stimulate new bone formation to treat osteoporosis.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
- Central Laboratory, Peking University International Hospital, Beijing, China
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yanan Chang
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Li Shu
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
4
|
Arambula-Maldonado R, Liu Y, Xing M, Mequanint K. Bioactive and electrically conductive GelMA-BG-MWCNT nanocomposite hydrogel bone biomaterials. BIOMATERIALS ADVANCES 2023; 154:213616. [PMID: 37708668 DOI: 10.1016/j.bioadv.2023.213616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Natural bone is a complex organic-inorganic composite tissue that possesses endogenous electrically conductive properties in response to mechanical forces. Mimicking these unique properties collectively in a single synthetic biomaterial has so far remained a formidable task. In this study, we report a synthesis strategy that comprised gelatin methacryloyl (GelMA), sol-gel derived tertiary bioactive glass (BG), and uniformly dispersed multiwall carbon nanotubes (MWCNTs) to create nanocomposite hydrogels that mimic the organic-inorganic composition of bone. Using this strategy, biomaterials that are electrically conductive and possess electro-mechanical properties similar to endogenous bone were prepared without affecting their biocompatibility. Nanocomposite hydrogel biomaterials were biodegradable and promoted biomineralization, and supported multipotent mesenchymal progenitor cell (10T1/2) cell interactions and differentiation into an osteogenic lineage. To the best of our knowledge, this work presents the first study to functionally characterize suitable electro-mechanical responses in nanocomposite hydrogels, a key process that occurs in the natural bone to drive its repair and regeneration. Overall, the results demonstrated GelMA-BG-MWCNT nanocomposite hydrogels have the potential to become promising bioactive biomaterials for use in bone repair and regeneration.
Collapse
Affiliation(s)
- Rebeca Arambula-Maldonado
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada
| | - Yuqing Liu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London N6A 5B9, Canada.
| |
Collapse
|
5
|
Wang JS, Tokavanich N, Wein MN. SP7: from Bone Development to Skeletal Disease. Curr Osteoporos Rep 2023; 21:241-252. [PMID: 36881265 PMCID: PMC10758296 DOI: 10.1007/s11914-023-00778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
6
|
Tomas M, Karl M, Čandrlić M, Matijević M, Juzbašić M, Peloza OC, Radetić ATJ, Kuiš D, Vidaković B, Ivanišević Z, Kačarević ŽP. A Histologic, Histomorphometric, and Immunohistochemical Evaluation of Anorganic Bovine Bone and Injectable Biphasic Calcium Phosphate in Humans: A Randomized Clinical Trial. Int J Mol Sci 2023; 24:ijms24065539. [PMID: 36982613 PMCID: PMC10056509 DOI: 10.3390/ijms24065539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Following trauma, chronic periapical process, or tooth extraction, a large loss of bone volume is noticed during the healing process. To facilitate the placement of dental implants, various surgical procedures are used for an optimal alveolar ridge profile, while maintaining adequate bone dimensions. The main aim of this study was to determine the healing ability (histologically and immunohistologically) of alveolar bone defects during augmentation with two different biomaterials: injectable biphasic calcium phosphate (BCP) and anorganic bovine bone (ABB). Thirty-eight subjects were randomly divided into two groups. The first group received the tested bone substitute biomaterial (BSB), i.e., BCP (maxresorb inject®), and the second group received an alternative to the gold standard, i.e., ABB (Bio-Oss®). The histopathological, histomorphometric, and immunohistochemical analyses gave comparable results for these bone substitute materials in terms of newly formed bone: (BCP: 39.91 ± 8.49%, ABB: 41.73 ± 13.99%), residual biomaterial (BCP: 28.61 ± 11.38%, ABB: 31.72 ± 15.52%), and soft tissue (BCP: 31.49 ± 11.09%, ABB: 26.54 ± 7.25%), with no significant difference found between the groups (p < 0.05, t-test), proving that BCP is equally suitable and successful for alveolar bone regeneration.
Collapse
Affiliation(s)
- Matej Tomas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Matej Karl
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Marija Čandrlić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Marko Matijević
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Community Healthcare Center of Osijek-Baranja County, 31 000 Osijek, Croatia
| | - Martina Juzbašić
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51 000 Rijeka, Croatia
| | | | - Davor Kuiš
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Department of Periodontology, Faculty of Dental Medicine Rijeka, Univeristy of Rijeka, 51 000 Rijeka, Croatia
- Clinical Hospital Center Rijeka, 51 000 Rijeka, Croatia
| | - Bruno Vidaković
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
| | - Zrinka Ivanišević
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Correspondence: (Z.I.); (Ž.P.K.)
| | - Željka Perić Kačarević
- Interdisciplinary University Study of Molecular Biosciences, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
- Correspondence: (Z.I.); (Ž.P.K.)
| |
Collapse
|
7
|
Scannavino RCP, Riccucci G, Ferraris S, Duarte GLC, de Oliveira PT, Spriano S. Functionalization with Polyphenols of a Nano-Textured Ti Surface through a High-Amino Acid Medium: A Chemical-Physical and Biological Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2916. [PMID: 36079954 PMCID: PMC9458157 DOI: 10.3390/nano12172916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The study aimed to identify an effective mechanism of adsorption of polyphenols on a nano-textured Ti surface and to evaluate the osteogenic differentiation on it. The source of polyphenols was a natural extract from red grape pomace. A chemical etching was used to form an oxide layer with a nanoscale texture on Ti; this layer is hydrophilic, but without hydroxyl groups with high acidic-basic chemical reactivity. The samples were characterized by electron and fluorescence microscopies, UV-Vis spectroscopy, contact angle measurements, zeta potential titration curves, and Folin-Ciocâlteu test. The presence of an adsorbed layer of polyphenols on the functionalized surface, maintaining redox ability, was confirmed by several tests. Consistent with the surface features, the adsorption was maximized by dissolving the extract in a high-amino acid medium, with respect to an inorganic solution, exploiting the high affinity of amino acids for polyphenols and for porous titanium surfaces. The osteogenic differentiation was assessed on an osteoblastic cell line by immunofluorescence, cell viability, expression of key osteoblast markers, and extracellular matrix mineralization. The surfaces functionalized with the extract diluted in the range 1 × 10-5-1 mg/mL resulted in having a greater osteogenic activity for the highest concentration, with lower values of cell viability; higher expression of alkaline phosphatase, bone sialoprotein, and collagen; and lower levels of osteopontin. In conclusion, the functionalization of a nano-textured Ti surface with polyphenols can potentially favor the osteogenic activity of osseointegrated implants.
Collapse
Affiliation(s)
- Rafaella C. P. Scannavino
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Giacomo Riccucci
- Department of Applied Science and Technology, Politecnico di Torino, 10126 Torino, Italy
| | - Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10126 Torino, Italy
| | - Gabriel L. C. Duarte
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Paulo T. de Oliveira
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10126 Torino, Italy
| |
Collapse
|
8
|
Zheng CY, Chu XY, Gao CY, Hu HY, He X, Chen X, Yang K, Zhang DL. TAT&RGD Peptide-Modified Naringin-Loaded Lipid Nanoparticles Promote the Osteogenic Differentiation of Human Dental Pulp Stem Cells. Int J Nanomedicine 2022; 17:3269-3286. [PMID: 35924260 PMCID: PMC9342892 DOI: 10.2147/ijn.s371715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Naringin is a naturally occurring flavanone that promotes osteogenesis. Owing to the high lipophilicity, poor in vivo bioavailability, and extensive metabolic alteration upon administration, the clinical efficacy of naringin is understudied. Additionally, information on the molecular mechanism by which it promotes osteogenesis is limited. METHODS In this study, we prepared TAT & RGD peptide-modified naringin-loaded nanoparticles (TAT-RGD-NAR-NPs), evaluated their potency on the osteogenic differentiation of human dental pulp stem cells (hDPSCs), and studied its mechanism of action through metabolomic analysis. RESULTS The particle size and zeta potential of TAT-RGD-NAR-NPs were 160.70±2.05 mm and -20.77±0.47mV, respectively. The result of cell uptake assay showed that TAT-RGD-NAR-NPs could effectively enter hDPSCs. TAT-RGD-NAR-NPs had a more significant effect on cell proliferation and osteogenic differentiation promotion. Furthermore, in metabolomic analysis, naringin particles showed a strong influence on the glycerophospholipid metabolism pathway of hDPSCs. Specifically, it upregulated the expression of PLA2G3 and PLA2G1B (two isozymes of phospholipase A2, PLA2), increased the biosynthesis of lysophosphatidic acid (LPA). CONCLUSION These results suggested that TAT-RGD-NPs might be used for transporting naringin to hDPSCs for modulating stem cell osteogenic differentiation. The metabolomic analysis was used for the first time to elucidate the mechanism by which naringin promotes hDPSCs osteogenesis by upregulating PLA2G3 and PLA2G1B.
Collapse
Affiliation(s)
- Chun-Yan Zheng
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chun-Yan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Hua-Ying Hu
- Birth Defects Prevention and Control Technology Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Xu Chen
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong-Liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Hojo H, Ohba S. Sp7 Action in the Skeleton: Its Mode of Action, Functions, and Relevance to Skeletal Diseases. Int J Mol Sci 2022; 23:5647. [PMID: 35628456 PMCID: PMC9143072 DOI: 10.3390/ijms23105647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Abidin IZZ, Manogaran T, Wahab RMA, Yazid F, Ariffin SHZ. A Comparative Analysis of Ascorbic Acid-induced Cytotoxicity and Differentiation between SHED and DPSC. Curr Stem Cell Res Ther 2022; 17:576-588. [DOI: 10.2174/1574888x17666220124141310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Aim:
The aim of this study was to compare dental pulp tissue in human exfoliated deciduous teeth (SHEDs) and dental pulp stem cells (DPSCs) in response to ascorbic acid as the sole osteoblast inducer.
Background:
A cocktail of ascorbic acid, β-glycerophosphate, and dexamethasone has been widely used to induce osteoblast differentiation. However, under certain conditions, β-glycerophosphate and dexamethasone can cause a decrease in cell viability in stem cells.
Objectives:
This study aims to determine the cytotoxic effect and potential of ascorbic acid as the sole inducer of osteoblast differentiation.
Methods:
Cytotoxicity analyses in the presence of 10-500 µg/mL ascorbic acid were performed in both cell types using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The concentrations below the IC50 (i.e., 10-150 µg/mL) were used to determine osteoblast differentiation potential of ascorbic acid using the alkaline phosphatase (ALP) assay, von Kossa staining, and reverse transcription-polymerase chain reaction.
Results:
SHEDs and DPSCs proliferated for 21 days, expressed a Mesenchymal Stem Cell (MSC) marker (CD73+), and did not express Hematopoietic Stem Cell (HSC) markers (CD34- and SLAMF1-). SHEDs had a higher range of IC50 values (215-240 µg/mL ascorbic acid), while the IC50 values for DPSCs were 177-211 µg/mL after 24-72 hours. SHEDs treated with 10-100 µg/mL ascorbic acid alone exhibited higher ALP-specific activity and a higher percentage of mineralisation than DPSCs. Both cell types expressed osteoblast markers on day 21, i.e., RUNX2+ and BSP+, in the presence of ascorbic acid.
Conclusions:
SHEDs survive at higher concentrations of ascorbic acid as compared to DPSC. The cytotoxic effect was only exhibited at ≥250 µg/mL ascorbic acid. In addition, SHED exhibited better ALP and mineralization activities, but lower osteoblast marker expression than DPSC in response to ascorbic acid as the sole inducer.
Collapse
Affiliation(s)
| | - Thanaletchumi Manogaran
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Farinawati Yazid
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
The Effects of Polyphenol, Tannic Acid, or Tannic Acid in Combination with Pamidronate on Human Osteoblast Cell Line Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020451. [PMID: 35056766 PMCID: PMC8779126 DOI: 10.3390/molecules27020451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/04/2023]
Abstract
Background: This study investigates the effect of tannic acid (TA) combined with pamidronate (PAM) on a human osteoblast cell line. Methods: EC50 for TA, PAM, and different combination ratios of TA and PAM (25:75, 50:50, 75:25) were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The combination index value was utilized to analyze the degree of drug interaction, while trypan blue assay was applied to analyze the cells proliferation effect. The mineralization and detection of bone BSP and Osx genes were determined via histochemical staining and PCR test, respectively. Results: The EC50 of osteoblasts treated with TA and a 75:25 ratio of TA and PAM were more potent with lower EC50 at 0.56 µg/mL and 0.48 µg/mL, respectively. The combination of TA and PAM (75:25) was shown to have synergistic interaction. On Day 7, both TA and PAM groups showed significantly increased proliferation compared with control and combination groups. On Day 7, both the TA and combination-treated groups demonstrated a higher production of calcium deposits than the control and PAM-treated groups. Moreover, on Day 7, the combination-treated group showed a significantly higher expression of BSP and Osx genes than both the TA and PAM groups. Conclusion: Combination treatment of TA and PAM at 75:25 ameliorated the highest enhancement of osteoblast proliferation and mineralization as well as caused a high expression of BSP and Osx genes.
Collapse
|
12
|
Cao J, Yang B, Yarmolenka M, Lian R, Jiang X, Zhao J, Rogachev A. Osteogenic potential evaluation of biotin combined with magnesium-doped hydroxyapatite sustained-release film. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112679. [DOI: 10.1016/j.msec.2022.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
13
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
14
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
15
|
Amirhosseini M, Bernhardsson M, Lång P, Andersson G, Flygare J, Fahlgren A. Cyclin-dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing. J Cell Physiol 2019; 234:16503-16516. [PMID: 30793301 DOI: 10.1002/jcp.28321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
Cyclin-dependent kinase 8 (CDK8) is a mediator complex-associated transcriptional regulator that acts depending on context and cell type. While primarily under investigation as potential cancer therapeutics, some inhibitors of CDK8-and its paralog CDK19-have been reported to affect the osteoblast lineage and bone formation. This study investigated the effects of two selective CDK8/19 inhibitors on osteoclastogenesis and osteoblasts in vitro, and further evaluated how local treatment with a CDK8/19 inhibitor affects cancellous bone healing in rats. CDK8/19 inhibitors did not alter the proliferation of neither mouse bone marrow-derived macrophages (BMMs) nor primary mouse osteoblasts. Receptor activator of nuclear factor κΒ (NF-κB) ligand (RANKL)-induced osteoclastogenesis from mouse BMMs was suppressed markedly by inhibition of CDK8/19, concomitant with reduced tartrate-resistant acid phosphatase (TRAP) activity and C-terminal telopeptide of type I collagen levels. This was accompanied by downregulation of PU.1, RANK, NF-κB, nuclear factor of activated T-cells 1 (NFATc1), dendritic cell-specific transmembrane protein (DC-STAMP), TRAP, and cathepsin K in RANKL-stimulated BMMs. Downregulating RANK and its downstream signaling in osteoclast precursors enforce CDK8/19 inhibitors as anticatabolic agents to impede excessive osteoclastogenesis. In mouse primary osteoblasts, CDK8/19 inhibition did not affect differentiation but enhanced osteoblast mineralization by promoting alkaline phosphatase activity and downregulating osteopontin, a negative regulator of mineralization. In rat tibiae, a CDK8/19 inhibitor administered locally promoted cancellous bone regeneration. Our data indicate that inhibitors of CDK8/19 have the potential to develop into therapeutics to restrict osteolysis and enhance bone regeneration.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Magnus Bernhardsson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Johan Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Fahlgren
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Oliveira GR, Vargas-Sanchez PK, Fernandes RR, Ricoldi MST, Semeghini MS, Pitol DL, de Sousa LG, Siessere S, Bombonato-Prado KF. Lycopene influences osteoblast functional activity and prevents femur bone loss in female rats submitted to an experimental model of osteoporosis. J Bone Miner Metab 2019; 37:658-667. [PMID: 30357566 DOI: 10.1007/s00774-018-0970-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022]
Abstract
Antioxidant properties of several nutrients may influence bone metabolism, affording protection against damaging effects caused by oxidative stress. Thus, we hypothesized that lycopene may benefit bone tissue metabolism and functional activity of osteoblastic cells from bone marrow of osteoporotic female rats. Wistar rats were ovariectomized and paired with sham animals. In vitro evaluations were performed after 60 days of surgery, when cells were cultured in osteogenic medium and divided in control (C), ovariectomized (OVX) and ovariectomized + 1 μmol/L lycopene (OVXL) groups. Besides, in vivo studies were carried out to evaluate femur bone remodeling by histological and histomorphometric analyses after daily intake of 10 mg/kg of lycopene for 30 and 60 days after ovariectomy. Cell proliferation was significantly higher in OVX and OVXL groups after 10 days of culture. Alkaline phosphatase activity (ALP) was higher in OVXL group in later periods of cell culture, whereas its in situ detection was higher for this group in all experimental periods; nevertheless, mineralization did not show significant differences among the groups. There was a significant upregulation of genes Sp7, Runx2 and Bsp after 3 days and genes Runx2 and Bglap after 10 days from OVXL when compared to OVX. In vivo results demonstrated that daily intake of 10 mg/kg of lycopene for 60 days decreased bone loss in femur epiphysis in ovariectomized rats by maintaining trabecular bone similar to controls. Data obtained suggest that lycopene might benefit the functional activity of osteoblastic cells from ovariectomized rats, as well as avoid further bone resorption.
Collapse
Affiliation(s)
- Gustavo Ribeiro Oliveira
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Paula Katherine Vargas-Sanchez
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Roger Rodrigo Fernandes
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Milla Sprone Tavares Ricoldi
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Mayara Sgarbi Semeghini
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Dimitrius Leonardo Pitol
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Luiz Gustavo de Sousa
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Selma Siessere
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Cell Culture Laboratory, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
17
|
Distal-less homeobox 5 promotes the osteo-/dentinogenic differentiation potential of stem cells from apical papilla by activating histone demethylase KDM4B through a positive feedback mechanism. Exp Cell Res 2019; 374:221-230. [DOI: 10.1016/j.yexcr.2018.11.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022]
|
18
|
Artigas N, Gámez B, Cubillos-Rojas M, Sánchez-de Diego C, Valer JA, Pons G, Rosa JL, Ventura F. p53 inhibits SP7/Osterix activity in the transcriptional program of osteoblast differentiation. Cell Death Differ 2017; 24:2022-2031. [PMID: 28777372 PMCID: PMC5686339 DOI: 10.1038/cdd.2017.113] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Osteoblast differentiation is achieved by activating a transcriptional network in which Dlx5, Runx2 and Osx/SP7 have fundamental roles. The tumour suppressor p53 exerts a repressive effect on bone development and remodelling through an unknown mechanism that inhibits the osteoblast differentiation programme. Here we report a physical and functional interaction between Osx and p53 gene products. Physical interaction was found between overexpressed proteins and involved a region adjacent to the OSX zinc fingers and the DNA-binding domain of p53. This interaction results in a p53-mediated repression of OSX transcriptional activity leading to a downregulation of the osteogenic programme. Moreover, we show that p53 is also able to repress key osteoblastic genes in Runx2-deficient osteoblasts. The ability of p53 to suppress osteogenesis is independent of its DNA recognition ability but requires a native conformation of p53, as a conformational missense mutant failed to inhibit OSX. Our data further demonstrates that p53 inhibits OSX binding to their responsive Sp1/GC-rich sites in the promoters of their osteogenic target genes, such as IBSP or COL1A1. Moreover, p53 interaction to OSX sequesters OSX from binding to DLX5. This competition blocks the ability of OSX to act as a cofactor of DLX5 to activate homeodomain-containing promoters. Altogether, our data support a model wherein p53 represses OSX-DNA binding and DLX5-OSX interaction, and thereby deregulates the osteogenic transcriptional network. This mechanism might have relevant roles in bone pathologies associated to osteosarcomas and ageing.
Collapse
Affiliation(s)
- Natalia Artigas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Mónica Cubillos-Rojas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
19
|
Villa I, Senesi P, Montesano A, Ferraretto A, Vacante F, Spinello A, Bottani M, Bolamperti S, Rubinacci A, Luzi L, Terruzzi I. Betaine promotes cell differentiation of human osteoblasts in primary culture. J Transl Med 2017; 15:132. [PMID: 28592272 PMCID: PMC5463390 DOI: 10.1186/s12967-017-1233-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Betaine (BET), a component of many foods, is an essential osmolyte and a source of methyl groups; it also shows an antioxidant activity. Moreover, BET stimulates muscle differentiation via insulin like growth factor I (IGF-I). The processes of myogenesis and osteogenesis involve common mechanisms with skeletal muscle cells and osteoblasts sharing the same precursor. Therefore, we have hypothesized that BET might be effective on osteoblast cell differentiation. METHODS The effect of BET was tested in human osteoblasts (hObs) derived from trabecular bone samples obtained from waste material of orthopedic surgery. Cells were treated with 10 mM BET at 5, 15, 60 min and 3, 6 and 24 h. The possible effects of BET on hObs differentiation were evaluated by real time PCR, western blot and immunofluorescence analysis. Calcium imaging was used to monitor intracellular calcium changes. RESULTS Real time PCR results showed that BET stimulated significantly the expression of RUNX2, osterix, bone sialoprotein and osteopontin. Western blot and immunofluorescence confirmed BET stimulation of osteopontin protein synthesis. BET stimulated ERK signaling, key pathway involved in osteoblastogenesis and calcium signaling. BET induced a rise of intracellular calcium by means of the calcium ions influx from the extracellular milieu through the L-type calcium channels and CaMKII signaling activation. A significant rise in IGF-I mRNA at 3 and 6 h and a significant increase of IGF-I protein at 6 and 24 h after BET stimulus was detected. Furthermore, BET was able to increase significantly both SOD2 gene expression and protein content. CONCLUSIONS Our study showed that three signaling pathways, i.e. cytosolic calcium influx, ERK activation and IGF-I production, are enhanced by BET in human osteoblasts. These pathways could have synergistic effects on osteogenic gene expression and protein synthesis, thus potentially leading to enhanced bone formation. Taken together, these results suggest that BET could be a promising nutraceutical therapeutic agent in the strategy to counteract the concomitant and interacting impact of sarcopenia and osteoporosis, i.e. the major determinants of senile frailty and related mortality.
Collapse
Affiliation(s)
- Isabella Villa
- Bone Metabolism Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Senesi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Montesano
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anita Ferraretto
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fernanda Vacante
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alice Spinello
- Bone Metabolism Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Michela Bottani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Simona Bolamperti
- Bone Metabolism Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | - Livio Luzi
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, 60 Olgettina street, 20132 Milan, Italy
| |
Collapse
|