1
|
Tufail M. PTEN-mediated resistance in cancer: From foundation to future therapies. Toxicol Rep 2025; 14:101987. [PMID: 40129883 PMCID: PMC11930710 DOI: 10.1016/j.toxrep.2025.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
In cancer resistance, phosphatase and tensin homolog deleted (PTEN) has emerged as a prominent protagonist. PTEN exerts its influence by regulating crucial signaling pathways that govern cell proliferation, survival, and differentiation. This comprehensive review article investigates deeply into the complex realm of PTEN-mediated drug resistance mechanisms in cancers. Our journey begins by exploring PTEN's foundational role of PTEN, unveiling its significance as a molecular conductor that intricately coordinates vital cellular pathways. We thoroughly dissected the intricate milieu of PTEN alterations, including mutations, deletions, and epigenetic silencing, and elucidated their profound implications for fueling cancer growth and evading treatment. As we navigate the complex network of PTEN, we unravel the intricate interplay between PTEN and pivotal signaling pathways, such as PI3K/AKT, MAPK/ERK, and Wnt/β-catenin, further complicating the resistance landscape. This expedition, through these intricately intertwined signaling cascades, provides insight into the multifaceted mechanisms driving resistance, thereby revealing potential exploitable weaknesses. In our quest for therapeutic strategies, we need to explore innovative approaches to restore PTEN function, encompassing genetic therapies, pharmacological agents, and precision medicines tailored to PTEN status. The concept of combination therapy has emerged as a potent tool to overcome PTEN-associated resistance, offering promising synergistic interactions with standard treatments, targeted therapies, or immunotherapy. This review offers a comprehensive overview of PTEN-mediated drug resistance mechanisms in cancer and elucidates intricate interactions within this complex landscape. This underscores the central role of PTEN in drug resistance and provides valuable insights into promising strategies with the potential to reshape the future of cancer treatment.
Collapse
|
2
|
Mei S, Huang J, Zhang Z, Lei H, Huang Q, Qu L, Zheng L. InfoScan: A New Transcript Identification Tool Based on scRNA-Seq and Its Application in Glioblastoma. Int J Mol Sci 2025; 26:2208. [PMID: 40076844 PMCID: PMC11900204 DOI: 10.3390/ijms26052208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/05/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
InfoScan is a novel bioinformatics tool designed for the comprehensive analysis of full-length single-cell RNA sequencing (scRNA-seq) data. It enables the identification of unannotated transcripts and rare cell populations, providing a powerful platform for transcriptome characterization. In this study, InfoScan was applied to glioblastoma multiforme (GBM), identifying a rare "neoplastic-stemness" subpopulation exhibiting cancer stem cell-like features. Functional analyses suggested that tumor-associated macrophages (TAMs) secrete SPP1, which binds to CD44 on neoplastic-stemness cells, activating the PI3K/AKT pathway and driving lncRNA transcription to promote metastasis. Integration of TCGA and CGGA datasets further supported these findings, highlighting key mutations associated with the neoplastic-stemness subpopulation. Drug sensitivity assays indicated that neoplastic-stemness cells might be sensitive to omipalisib, a PI3K inhibitor, pointing to a potential therapeutic target. InfoScan offers a robust framework for exploring complex transcriptomic landscapes and characterizing rare cell populations, providing valuable insights into GBM biology and advancing precision cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Agriculture and Biotechnology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.M.); (J.H.); (Z.Z.); (H.L.); (Q.H.); (L.Q.)
| |
Collapse
|
3
|
Mirzaei S, Ahangari F, Faramarzi F, Khoshnazar SM, Khormizi FZ, Aghagolzadeh M, Rostami M, Asghariazar V, Alimohammadi M, Rahimzadeh P, Farahani N. MicroRNA-146 family: Molecular insights into their role in regulation of signaling pathways in glioma progression. Pathol Res Pract 2024; 264:155707. [PMID: 39536541 DOI: 10.1016/j.prp.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioma is a highly lethal brain cancer in humans. Despite advancements in treatment, the prognosis for patients remains unfavorable. Epigenetic factors, along with their interactions and non-coding RNAs (ncRNAs), are crucial in glioma cells' development and aggressive characteristics. MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that modulate the expression of various genes by binding to target mRNA molecules. They play a critical role in regulating essential biological mechanisms such as cell proliferation and differentiation, cell cycle, and apoptosis. MiR-146a/miR-146b is a significant and prevalent miRNA whose expression alterations are linked to various pathological changes in cancer cells, as well as the modulation of several cellular signaling pathways, including NF-κB, TGF-β, PI3K/Akt, and Notch-1. Scientists may identify novel targets in clinical settings by studying the complicated link between Mir-146a/mir-146b, drug resistance, molecular pathways, and pharmacological intervention in gliomas. Additionally, its interactions with other ncRNAs, such as circular RNA and long non-coding RNA, contribute to the pathogenesis of glioma. As well as miR-146 holds potential as both a diagnostic and therapeutic biomarker for patients with this condition. In the current review, we investigate the significance of miRNAs in the context of glioma, with a particular focus on the critical role of Mir-146a/mir-146b in glioma tumors. Additionally, we examined the clinical relevance of this miRNA, highlighting its potential implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Basic Sciences, University of Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/18/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Lu X, Zhang D. Expression of lncRNAs in glioma: A lighthouse for patients with glioma. Heliyon 2024; 10:e24799. [PMID: 38322836 PMCID: PMC10844031 DOI: 10.1016/j.heliyon.2024.e24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Glioma is the most common malignant tumour in the central nervous system, accounting for approximately 30 % of the primary tumours of this system. The World Health Organization grades for glioma include: Grade I (pilocytic astrocytoma), Grade II (astrocytoma, oligodastoma, etc.), Grade III (anaplastic astrocytoma, anaplastic oligodastoma, etc.) and Grade IV (glioblastoma). With grade increases, the proliferation, invasion and other malignant biological properties of the glioma are enhanced, and the treatment results are less satisfactory. The overall survival of patients with glioblastoma is less than 15 months. Recent research has focused on the roles of long non-coding RNAs, previously regarded as "transcriptional noise", in diseases, leading to a new understanding of these roles. Therefore, we conducted this review to explore the progress of research regarding the expression and mechanism of long non-coding RNAs in glioma.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
8
|
Sisakht AK, Malekan M, Ghobadinezhad F, Firouzabadi SNM, Jafari A, Mirazimi SMA, Abadi B, Shafabakhsh R, Mirzaei H. Cellular Conversations in Glioblastoma Progression, Diagnosis and Treatment. Cell Mol Neurobiol 2023; 43:585-603. [PMID: 35411434 PMCID: PMC11415179 DOI: 10.1007/s10571-022-01212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most frequent malignancy among primary brain tumors in adults and one of the worst 5-year survival rates (< 7%) among all human cancers. Till now, treatments that target particular cell or intracellular metabolism have not improved patients' survival. GBM recruits healthy brain cells and subverts their processes to create a microenvironment that contributes to supporting tumor progression. This microenvironment encompasses a complex network in which malignant cells interact with each other and with normal and immune cells to promote tumor proliferation, angiogenesis, metastasis, immune suppression, and treatment resistance. Communication can be direct via cell-to-cell contact, mainly through adhesion molecules, tunneling nanotubes, gap junctions, or indirect by conventional paracrine signaling by cytokine, neurotransmitter, and extracellular vesicles. Understanding these communication routes could open up new avenues for the treatment of this lethal tumor. Hence, therapeutic approaches based on glioma cells` communication have recently drawn attention. This review summarizes recent findings on the crosstalk between glioblastoma cells and their tumor microenvironment, and the impact of this conversation on glioblastoma progression. We also discuss the mechanism of communication of glioma cells and their importance as therapeutic targets and diagnostic and prognostic biomarkers. Overall, understanding the biological mechanism of specific interactions in the tumor microenvironment may help in predicting patient prognosis and developing novel therapeutic strategies to target GBM.
Collapse
Affiliation(s)
- Ali Karimi Sisakht
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malekan
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Ghobadinezhad
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyedeh Negar Mousavi Firouzabadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Banafshe Abadi
- Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
9
|
Involvement of lncRNA TUG1 in HIV-1 Tat-Induced Astrocyte Senescence. Int J Mol Sci 2023; 24:ijms24054330. [PMID: 36901763 PMCID: PMC10002460 DOI: 10.3390/ijms24054330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
HIV-1 infection in the era of combined antiretroviral therapy has been associated with premature aging. Among the various features of HIV-1 associated neurocognitive disorders, astrocyte senescence has been surmised as a potential cause contributing to HIV-1-induced brain aging and neurocognitive impairments. Recently, lncRNAs have also been implicated to play essential roles in the onset of cellular senescence. Herein, using human primary astrocytes (HPAs), we investigated the role of lncRNA TUG1 in HIV-1 Tat-mediated onset of astrocyte senescence. We found that HPAs exposed to HIV-1 Tat resulted in significant upregulation of lncRNA TUG1 expression that was accompanied by elevated expression of p16 and p21, respectively. Additionally, HIV-1 Tat-exposed HPAs demonstrated increased expression of senescence-associated (SA) markers-SA-β-galactosidase (SA-β-gal) activity and SA-heterochromatin foci-cell-cycle arrest, and increased production of reactive oxygen species and proinflammatory cytokines. Intriguingly, gene silencing of lncRNA TUG1 in HPAs also reversed HIV-1 Tat-induced upregulation of p21, p16, SA-β gal activity, cellular activation, and proinflammatory cytokines. Furthermore, increased expression of astrocytic p16 and p21, lncRNA TUG1, and proinflammatory cytokines were observed in the prefrontal cortices of HIV-1 transgenic rats, thereby suggesting the occurrence of senescence activation in vivo. Overall, our data indicate that HIV-1 Tat-induced astrocyte senescence involves the lncRNA TUG1 and could serve as a potential therapeutic target for dampening accelerated aging associated with HIV-1/HIV-1 proteins.
Collapse
|
10
|
TUG1/MAZ/FTH1 Axis Attenuates the Antiglioma Effect of Dihydroartemisinin by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7843863. [PMID: 36164395 PMCID: PMC9509247 DOI: 10.1155/2022/7843863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Glioma is the most common primary intracranial malignant tumor in the brain. Currently, due to the limited treatment methods, the clinical outcome of patients with standard surgery combined with radiotherapy and chemotherapy is not satisfactory. Therefore, we urgently need to develop effective drugs to solve this problem. As a semisynthetic derivative of artemisinin, dihydroartemisinin (DHA) has been proved to have antitumor activity in glioma, which can induce apoptosis and inhibit the proliferation, migration, and invasion of glioma cells. In recent years, ferroptosis has been identified as another antitumor mechanism of DHA. Researchers have shown that DHA could promote ferroptosis in glioma cells. However, the specific molecular mechanisms of ferroptosis induced by DHA need more exploration. In this study, we found DHA could induce ferroptosis with ROS production and lipid peroxidation in glioma cells. Low expression of GPX4 and high expression of HMOX1 were identified in DHA treated glioma cells. Surprisingly, we found FTH1, a negative regulator of ferroptosis, upregulated in DHA treated glioma cells. It indicated that there should be some mechanisms that may cause ferroptosis attenuation in DHA treated glioma cells. For the first time, we confirmed that MYC-associated zinc finger protein (MAZ) could actively regulate FTH1 by binding to FTH1 promoter by CHIP assay. MAZ was further identified as the direct target of long noncoding RNA (lncRNA) TUG1 through luciferase assay. Downregulated expression of TUG1 and upregulated expression of MAZ were identified in DHA treated glioma cells. TUG1 overexpression or inhibition of FTH1 expression could enhance the antiglioma effect of DHA in vitro and in vivo, providing a promising strategy to enhance the antitumor effect of DHA in glioma.
Collapse
|
11
|
Wei W, Wang X, Wei Y, Liu S, Gao S, Tian H, Su D. lncRNA TUG1 protects intestinal epithelial cells from damage induced by high glucose and high fat via AMPK/SIRT1. Mol Med Rep 2022; 25:139. [PMID: 35211764 DOI: 10.3892/mmr.2022.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/12/2021] [Indexed: 11/05/2022] Open
Abstract
he incidence of obesity and type 2 diabetes mellitus (T2DM) is increasing year by year and shows a trend towards younger age groups worldwide. It has become a disease that endangers the health of individuals all over the world. Among numerous weight loss surgeries, sleeve gastrectomy (SG) has become one of the most common surgical strategies for the treatment of T2DM. However, SG‑mediated alterations to the molecular mechanism of metabolism require further investigation. Thus, reverse transcription‑quantitative PCR was used to detect the expression levels of long non‑coding (lnc)RNA taurine‑upregulated gene 1 (TUG1), Sirtuin 1 (SIRT1), AMP‑activated protein kinase (AMPK) and uncoupling protein 2 (UCP2) in the serum of T2DM patients, as well as in HIEC‑6 and SW480 cells following treatment with high glucose and high fat (HGHF). Protein expression was detected by western blotting. Cell Counting Kit‑8 assays were performed to analyze cell viability, and flow cytometry and a TUNEL assay was performed to evaluate cell apoptosis. The secretion of ILs in the culture medium was detected by conducting ELISAs. The results showed that lncRNA TUG1 and UCP2 expression was upregulated, SIRT1 and AMPK expression levels were decreased by SG. Under HGHF conditions, HIEC‑6 and SW480 cell viability was inhibited, apoptosis was promoted, TUG1 expression was downregulated, and SIRT1 and AMPK expression levels were upregulated. The secretory levels of IL‑1β, IL‑6 and IL‑8 were increased, whereas the secretion of IL‑10 was decreased under HGHF conditions. lncRNA TUG1 overexpression significantly reversed the effects of HGHF on cell viability, apoptosis and SIRT1, AMPK, UCP2 and Bcl‑2 expression levels. Together, the findings of the present study demonstrated that lncRNA TUG1 alleviated the damage induced by HGHF in intestinal epithelial cells by downregulating SIRT1 and AMPK expression, and upregulating UCP2 expression. Thus, the lncRNA TUG1/AMPK/SIRT1/UCP2 axis may serve an important role in the treatment of T2DM.
Collapse
Affiliation(s)
- Weiwei Wei
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xingquan Wang
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yaqing Wei
- Department of Infectious Diseases, The Central Hospital of Jiamusi City, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shilin Liu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengyu Gao
- Department of General Surgery, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Hao Tian
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Dewang Su
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
12
|
Lu L, Huang J, Mo J, Da X, Li Q, Fan M, Lu H. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett 2022; 27:17. [PMID: 35193488 PMCID: PMC8903597 DOI: 10.1186/s11658-022-00309-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence suggests that taurine upregulated gene 1 (TUG1) is crucial for tumor progression; however, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms are not well characterized. Methods The expression levels of TUG1, miR-524-5p, and sine oculis homeobox homolog 1 (SIX1) were determined using quantitative real-time PCR. The regulatory relationships were confirmed by dual-luciferase reporter assay. Cell proliferation and invasion were assessed using Cell Counting Kit 8 and transwell assays. Glucose uptake, cellular levels of lactate, lactate dehydrogenase (LDH), and adenosine triphosphate (ATP) were detected using commercially available kits. Silencing of TUG1 or SIX1 was performed by lentivirus transduction. Protein levels were measured by immunoblotting. Results Cancer-associated fibroblasts (CAFs)-secreted exosomes promoted migration, invasion, and glycolysis in HepG2 cells by releasing TUG1. The promotive effects of CAFs-secreted exosomes were attenuated by silencing of TUG1. TUG1 and SIX1 are targets of miR-524-5p. SIX1 knockdown inhibited the promotive effects of miR-524-5p inhibitor. Silencing of TUG1 suppressed tumor growth and lung metastasis and therefore increased survival of xenograft model mice. We also found that TUG1 and SIX1 were increased in HCC patients with metastasis while miR-524-5p was decreased in HCC patients with metastasis. Conclusions CAFs-derived exosomal TUG1 promoted migration, invasion, and glycolysis in HCC cells via the miR-524-5p/SIX1 axis. These findings may help establish the foundation for the development of therapeutics strategies and clinical management for HCC in future. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00309-9.
Collapse
Affiliation(s)
- Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jingjing Huang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jiantao Mo
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Xuanbo Da
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Qiaoxin Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China.
| |
Collapse
|
13
|
Zhang M, He P, Bian Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front Mol Neurosci 2021; 14:685143. [PMID: 34421536 PMCID: PMC8371338 DOI: 10.3389/fnmol.2021.685143] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are progressive and ultimately fatal. NDD onset is influenced by several factors including heredity and environmental cues. Long noncoding RNAs (lncRNAs) are a class of noncoding RNA molecules with: (i) lengths greater than 200 nucleotides, (ii) diverse biological functions, and (iii) highly conserved structures. They directly interact with molecules such as proteins and microRNAs and subsequently regulate the expression of their targets at the genetic, transcriptional, and post-transcriptional levels. Emerging studies indicate the important roles of lncRNAs in the progression of neurological diseases including NDDs. Additionally, improvements in detection technologies have enabled quantitative lncRNA detection and application to circulating fluids in clinical settings. Here, we review current research on lncRNAs in animal models and patients with NDDs. We also discuss the potential applicability of circulating lncRNAs as biomarkers in NDD diagnostics and prognostics. In the future, a better understanding of the roles of lncRNAs in NDDs will be essential to exploit these new therapeutic targets and improve noninvasive diagnostic methods for diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping He
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Circulating Long Non-Coding RNAs as Novel Potential Biomarkers for Osteogenic Sarcoma. Cancers (Basel) 2021; 13:cancers13164214. [PMID: 34439367 PMCID: PMC8392488 DOI: 10.3390/cancers13164214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression patterns associated with cancer and suggest their role as novel biomarkers. However, the potential of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that can contribute to the development of future precision medicine in oncology.
Collapse
|
15
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
16
|
Momtazmanesh S, Rezaei N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front Oncol 2021; 11:712786. [PMID: 34322395 PMCID: PMC8311560 DOI: 10.3389/fonc.2021.712786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common malignant central nervous system tumor with significant mortality and morbidity. Despite considerable advances, the exact molecular pathways involved in tumor progression are not fully elucidated, and patients commonly face a poor prognosis. Long non-coding RNAs (lncRNAs) have recently drawn extra attention for their potential roles in different types of cancer as well as non-malignant diseases. More than 200 lncRNAs have been reported to be associated with glioma. We aimed to assess the roles of the most investigated lncRNAs in different stages of tumor progression and the mediating molecular pathways in addition to their clinical applications. lncRNAs are involved in different stages of tumor formation, invasion, and progression, including regulating the cell cycle, apoptosis, autophagy, epithelial-to-mesenchymal transition, tumor stemness, angiogenesis, the integrity of the blood-tumor-brain barrier, tumor metabolism, and immunological responses. The well-known oncogenic lncRNAs, which are upregulated in glioma, are H19, HOTAIR, PVT1, UCA1, XIST, CRNDE, FOXD2-AS1, ANRIL, HOXA11-AS, TP73-AS1, and DANCR. On the other hand, MEG3, GAS5, CCASC2, and TUSC7 are tumor suppressor lncRNAs, which are downregulated. While most studies reported oncogenic effects for MALAT1, TUG1, and NEAT1, there are some controversies regarding these lncRNAs. Expression levels of lncRNAs can be associated with tumor grade, survival, treatment response (chemotherapy drugs or radiotherapy), and overall prognosis. Moreover, circulatory levels of lncRNAs, such as MALAT1, H19, HOTAIR, NEAT1, TUG1, GAS5, LINK-A, and TUSC7, can provide non-invasive diagnostic and prognostic tools. Modulation of expression of lncRNAs using antisense oligonucleotides can lead to novel therapeutics. Notably, a profound understanding of the underlying molecular pathways involved in the function of lncRNAs is required to develop novel therapeutic targets. More investigations with large sample sizes and increased focus on in-vivo models are required to expand our understanding of the potential roles and application of lncRNAs in glioma.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
De Martino M, Esposito F, Pallante P. Long non-coding RNAs regulating multiple proliferative pathways in cancer cell. Transl Cancer Res 2021; 10:3140-3157. [PMID: 35116622 PMCID: PMC8797882 DOI: 10.21037/tcr-21-230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) belong to an extremely heterogeneous class of non-coding RNAs with a length ranging from 200 to 100,000 bp. They modulate a series of cellular pathways in both physiological and pathological context. It is no coincidence that they are expressed in an aberrant way in pathologies such as cancer, so as to deserve to be subclassified as oncogenes or tumor suppressors. These molecules are also involved in the regulation of cancer cell proliferation. Several lncRNAs are able to modulate cell growth both positively and negatively, and in this review we have focused on a small group of them, characterized by the simultaneous action on different pathways regulating cell proliferation. They have been considered in the light of their behavior in three different subtypes of proliferative pathways that we can define as (I) tumor suppressor, (II) oncogenic and (III) transcriptionally-driven. More specifically, we have characterized some lncRNAs considered oncogenes (such as H19, linc-ROR, MALAT1, HULC, HOTAIR and ANRIL), tumor suppressors (such as MEG3 and lincRNA-p21), and both oncogenes/tumor suppressors (UCA1 and TUG1) in a little more detail. As can be understood from the review, the interactions between lncRNAs and their molecular targets, only in the context of controlling cell proliferation, give rise to an intricate molecular network, the understanding of which, in the future, will certainly be of help for the treatment of molecular diseases such as cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
18
|
Da M, Zhuang J, Zhou Y, Qi Q, Han S. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol Med 2021; 27:51. [PMID: 34039257 PMCID: PMC8157665 DOI: 10.1186/s10020-021-00312-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs with a length of more than 200 bp. The lncRNA taurine up-regulated gene 1 (TUG1) is abnormally expressed in many human malignant cancers, where it acts as a competitive endogenous RNA (ceRNA), regulating gene expression by specifically sponging its corresponding microRNAs. In the present review, we summarised the current understanding of the role of lncRNA TUG1 in cancer cell proliferation, metastasis, angiogenesis, chemotherapeutic drug resistance, radiosensitivity, cell regulation, and cell glycolysis, as well as highlighting its potential application as a clinical biomarker or therapeutic target for malignant cancer. This review provides the basis for new research directions for lncRNA TUG1 in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, 2088 East Tiaoxi Rd, Huzhou, Zhejiang, People's Republic of China
| | - Jing Zhuang
- Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000, Zhejiang, China
| | - Yani Zhou
- Graduate School of Medicine Faculty, Zhejiang University, No. 866 Yuhangtang Road, Xihu, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Quan Qi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, 313000, Zhejiang, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No. 1558, Sanhuan North Road, Wuxing, Huzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Zhang R, Yang F, Fan H, Wang H, Wang Q, Yang J, Song T. Long non-coding RNA TUG1/microRNA-187-3p/TESC axis modulates progression of pituitary adenoma via regulating the NF-κB signaling pathway. Cell Death Dis 2021; 12:524. [PMID: 34021124 PMCID: PMC8140116 DOI: 10.1038/s41419-021-03812-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/27/2023]
Abstract
The molecule mechanisms of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in human diseases have been broadly studied recently, therefore, our research aimed to assess the effect of lncRNA taurine upregulated gene 1 (TUG1)/miR-187-3p/tescalcin (TESC) axis in pituitary adenoma (PA) by regulating the nuclear factor-kappa B (NF-κB) signaling pathway. We observed that TUG1 was upregulated in PA tissues and was associated with invasion, knosp grade and tumor size. TUG1 particularly bound to miR-187-3p. TUG1 knockdown inhibited cell proliferation, invasion, migration, and epithelial–mesenchymal transition, promoted apoptosis, and regulated the expression of NF-κB p65 and inhibitor of κB (IκB)-α in PA cells lines in vitro, and also inhibited tumor growth in vivo, and these effects were reversed by miR-187-3p reduction. Similarly, miR-187-3p elevation inhibited PA cell malignant behaviors and modulated the expression of NF-κB p65 and IκB-α in PA cells, and reduced in vivo tumor growth as well. TUG1 inhibition downregulated TESC, which was targeted by miR-187-3p. In conclusion, this study suggests that TUG1 sponges miR-187-3p to affect PA development by elevating TESC and regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Haocong Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Qinghao Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China
| | - Jianxin Yang
- Department of Neurosurgery, The People's Hospital of Qingzhou, 262500, Qingzhou, Shandong, China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
20
|
LncRNA Taurine Upregulated Gene 1 as a Potential Biomarker in the Clinicopathology and Prognosis of Multiple Malignant Tumors: A Meta-Analysis. DISEASE MARKERS 2021; 2021:8818363. [PMID: 33747256 PMCID: PMC7943310 DOI: 10.1155/2021/8818363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
Background The lncRNA taurine upregulated gene 1 (TUG1) is a recently identified potential biomarker in cancer. However, its prognostic role in various cancers is inconsistent among published data. We conducted this meta-analysis to comprehensively confirm the prognostic effect of TUG1 in malignant tumors. Methods We systemically analyzed the prognostic-predictive capacity of TUG1 through amplifying sample sizes and cancer types. STATA 12.0 was applied for this meta-analysis. Results A total of 57 eligible studies were included in our meta-analysis. The pooled results suggested that overexpression of TUG1 was significantly correlated with unfavorable overall survival (OS) (HR = 1.70, p < 0.001), shorter recurrence-free survival (RFS) (HR = 2.40, p ≤ 0.001), and shorter event-free survival (EFS) (HR = 1.88, p < 0.001) in patients with cancer. In the subgroup analysis by cancer type, elevated TUG1 expression was associated with poorer survival in patients with gastrointestinal cancer, urinary tumors, gynecological tumors, hematological tumors, and osteosarcoma. However, high expression of TUG1 in respiratory tumors indicated a better prognosis. There was no correlation between high TUG1 expression and OS in patients with head and neck neoplasms or melanoma. Additionally, overexpression of TUG1 was found to be correlated with low-grade tumor differentiation, advanced tumor stage, positive lymphatic metastasis, and positive distant metastasis. Conclusions High TUG1 expression correlates with poor prognosis and advanced clinicopathological features, verifying the prognostic-predictive capacity of TUG1 in tumors, especially in gastrointestinal cancer, urinary tumors, gynecological tumors, hematological tumors, and osteosarcoma. Meanwhile, the prognostic role of TUG1 in respiratory tumor may be opposite to other tumors.
Collapse
|
21
|
Chaudhary R. Potential of long non-coding RNAs as a therapeutic target and molecular markers in glioblastoma pathogenesis. Heliyon 2021; 7:e06502. [PMID: 33786397 PMCID: PMC7988331 DOI: 10.1016/j.heliyon.2021.e06502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GB) is by far the most hostile type of malignant tumor that primarily affects the brain and spine, derived from star-shaped glial cells that are astrocytes and oligodendrocytes. Despite of significant efforts in recent years in glioblastoma research, the clinical efficacy of existing medical intervention is still limited and very few potential diagnostic markers are available. Long non-coding RNAs (lncRNAs) that lacks protein-coding capabilities were previously thought to be "junk sequences" in mammalian genomes are quite indispensible epigenetic regulators that can positively or negatively regulate gene expression and nuclear architecture, with significant roles in the initiation and development of tumors. Nevertheless, the precise mechanism of these distortedly expressed lncRNAs in glioblastoma pathogenesis is not yet fully understood. Since the advent of high-throughput sequencing technologies, more and more research have elucidated that lncRNAs are one of the most promising prognostic biomarkers and therapeutic targets for glioblastoma. In this paper, I briefly outlined the existing findings of lncRNAs. And also summarizes the profiles of different lncRNAs that have been broadly classified in glioblastoma research, with emphasis on both their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| |
Collapse
|
22
|
Katsushima K, Jallo G, Eberhart CG, Perera RJ. Long non-coding RNAs in brain tumors. NAR Cancer 2021; 3:zcaa041. [PMID: 34316694 PMCID: PMC8210177 DOI: 10.1093/narcan/zcaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St Petersburg, FL 33701, USA
| | - Charles G Eberhart
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - Ranjan J Perera
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
23
|
Xia W, Zhang Q, Li Q, Liang X. Relationship between long non-coding RNA TUG1 and prognosis of patients with gastric carcinoma: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23522. [PMID: 33285765 PMCID: PMC7717796 DOI: 10.1097/md.0000000000023522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) can predict the prognosis of patients with various cancers. The relationship between lncRNA taurine upregulated gene 1 (TUG1) and the prognosis of patients with gastric carcinoma still needs to be further explored. Therefore, this study attempted to explore the relationship between TUG1 and the prognosis of patients suffering from gastric carcinoma. METHODS The database was retrieved from China National Knowledge Infrastructure (CNKI), Chinese Biomedical literature Database (CBM), Chinese Scientific and Journal Database (VIP), Wan Fang database, PubMed, and EMBASE. Hazard ratios (HRs) and its 95% confidence interval (CIs) were applied to assess the prognostic effects of TUG1 on overall survival (OS). RevMan 5.3 software was adopted to perform meta-analysis. RESULTS The results of this meta-analysis would be submitted to peer-reviewed journals for publication. CONCLUSION This review provided a comprehensive overview of the relationship between TUG1 and the prognosis of patients with gastric carcinoma, and offered recommendations for clinical practices or guidelines.
Collapse
Affiliation(s)
| | | | | | - Xianchun Liang
- Department of Hepatological Surgery, Army Medical Center of PLA, Chongqing, China
| |
Collapse
|
24
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
25
|
Zhang B, Zhao C, Hou L, Wu Y. Silencing of the lncRNA TUG1 attenuates the epithelial-mesenchymal transition of renal tubular epithelial cells by sponging miR-141-3p via regulating β-catenin. Am J Physiol Renal Physiol 2020; 319:F1125-F1134. [PMID: 33135476 DOI: 10.1152/ajprenal.00321.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is characterized by excessive extracellular matrix deposition and involves epithelial-mesenchymal transition (EMT). The lncRNA taurine-upregulated gene 1 (TUG1) participates in EMT in several cancers; however, the effect and underlying mechanism of TUG1 in RIF-related EMT remain unclear. Here, we explored the mechanisms by which TUG1 modulates RIF. An in vivo model of renal fibrosis was established by unilateral ureteral obstruction in Balb/c mice. Human renal proximal tubular epithelial (HK-2) cells treated with transforming growth factor (TGF)-β1 were used to induce the in vitro model. Morphological changes and TUG1 expression were assessed. HK-2 cells were transfected with siRNA to silence TUG1. Western blot analysis, immunofluorescence staining, cell proliferation, and migration assays were performed to examine TGF-β1-induced changes in EMT markers and EMT-like cell behaviors. TUG1 and β-catenin (CTNNB1) levels were significantly upregulated, whereas miR-141-3p was significantly downregulated, during EMT in vitro and in vivo. TUG1 knockdown or miR-141-3p overexpression supported the epithelioid morphology of HK-2 cells while enhancing the downregulation of E-cadherin and upregulation of vimentin, α-smooth muscle actin, and β-catenin levels in TGF-β1-treated HK-2 cells. TUG1 knockdown promoted the proliferation and decreased the migration of HK-2 cells and enhanced the downregulation of miR-141-3p levels in TGF-β1-treated HK-2 cells. TUG1 directly targeted miR-141-3p, and miR-141-3p was directly bound to CTNNB1. Downregulation of miR-141-3p inhibited TUG1 silencing-induced suppression of EMT. In conclusion, TUG1 promotes EMT in TGF-β1-induced HK-2 cells via upregulation of β-catenin levels by sponging miR-141-3p, suggesting a novel therapeutic candidate for RIF.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengguang Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Bhattacharjee S, Li J, Dashwood RH. Emerging crosstalk between long non-coding RNAs and Nrf2 signaling. Cancer Lett 2020; 490:154-164. [DOI: 10.1016/j.canlet.2020.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
|
27
|
mTOR Modulates Intercellular Signals for Enlargement and Infiltration in Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12092486. [PMID: 32887296 PMCID: PMC7564864 DOI: 10.3390/cancers12092486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor. Emerging evidence indicate the multi-faceted role of extracellular vesicles (EVs) in GBM growth and proliferation. In fact, GBM-derived EVs can alter the phenotype of GBM-associated parenchymal cells; thus, promoting tumor growth, angiogenesis, and immune evasion. Remarkably, among several pathways that are frequently deregulated in GBM, mammalian Target of Rapamycin (mTOR) up-regulation, and subsequent autophagy (ATG) depression are considered hallmarks of GBM. In fact, mTOR-dependent ATG inhibition strongly correlates with the presence of EVs, which in turn promotes glioblastoma cancer stem cells (GSCs) self-renewal, proliferation, and infiltration. ATG and exosome release are reciprocally regulated. In detail, a failure in ATG enhances exosomal release. Therefore, strategies aimed at targeting on mTOR-dependent extracellular vesicles could be a promising approach for GBM prevention and treatment. Abstract Recently, exosomal release has been related to the acquisition of a malignant phenotype in glioblastoma cancer stem cells (GSCs). Remarkably, intriguing reports demonstrate that GSC-derived extracellular vesicles (EVs) contribute to glioblastoma multiforme (GBM) tumorigenesis via multiple pathways by regulating tumor growth, infiltration, and immune invasion. In fact, GSCs release tumor-promoting macrovesicles that can disseminate as paracrine factors to induce phenotypic alterations in glioma-associated parenchymal cells. In this way, GBM can actively recruit different stromal cells, which, in turn, may participate in tumor microenvironment (TME) remodeling and, thus, alter tumor progression. Vice versa, parenchymal cells can transfer their protein and genetic contents to GSCs by EVs; thus, promoting GSCs tumorigenicity. Moreover, GBM was shown to hijack EV-mediated cell-to-cell communication for self-maintenance. The present review examines the role of the mammalian Target of Rapamycin (mTOR) pathway in altering EVs/exosome-based cell-to-cell communication, thus modulating GBM infiltration and volume growth. In fact, exosomes have been implicated in GSC niche maintenance trough the modulation of GSCs stem cell-like properties, thus, affecting GBM infiltration and relapse. The present manuscript will focus on how EVs, and mostly exosomes, may act on GSCs and neighbor non tumorigenic stromal cells to modify their expression and translational profile, while making the TME surrounding the GSC niche more favorable for GBM growth and infiltration. Novel insights into the mTOR-dependent mechanisms regulating EV-mediated intercellular communication within GBM TME hold promising directions for future therapeutic applications.
Collapse
|
28
|
Wu D, Yin L, Sun D, Wang F, Wu Q, Xu Q, Xin B. Long noncoding RNA TUG1 promotes osteogenic differentiation of human periodontal ligament stem cell through sponging microRNA-222-3p to negatively regulate Smad2/7. Arch Oral Biol 2020; 117:104814. [DOI: 10.1016/j.archoralbio.2020.104814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
|
29
|
Zottel A, Šamec N, Videtič Paska A, Jovčevska I. Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers (Basel) 2020; 12:1842. [PMID: 32650527 PMCID: PMC7409010 DOI: 10.3390/cancers12071842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most aggressive and lethal primary brain malignancy, with an average patient survival from diagnosis of 14 months. Glioblastoma also usually progresses as a more invasive phenotype after initial treatment. A major step forward in our understanding of the nature of glioblastoma was achieved with large-scale expression analysis. However, due to genomic complexity and heterogeneity, transcriptomics alone is not enough to define the glioblastoma "fingerprint", so epigenetic mechanisms are being examined, including the noncoding genome. On the basis of their tissue specificity, long noncoding RNAs (lncRNAs) are being explored as new diagnostic and therapeutic targets. In addition, growing evidence indicates that lncRNAs have various roles in resistance to glioblastoma therapies (e.g., MALAT1, H19) and in glioblastoma progression (e.g., CRNDE, HOTAIRM1, ASLNC22381, ASLNC20819). Investigations have also focused on the prognostic value of lncRNAs, as well as the definition of the molecular signatures of glioma, to provide more precise tumor classification. This review discusses the potential that lncRNAs hold for the development of novel diagnostic and, hopefully, therapeutic targets that can contribute to prolonged survival and improved quality of life for patients with glioblastoma.
Collapse
Affiliation(s)
| | | | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.Z.); (N.Š.)
| |
Collapse
|
30
|
Xu YJ, Liu PP, Ng SC, Teng ZQ, Liu CM. Regulatory networks between Polycomb complexes and non-coding RNAs in the central nervous system. J Mol Cell Biol 2020; 12:327-336. [PMID: 31291646 PMCID: PMC7288736 DOI: 10.1093/jmcb/mjz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 06/11/2019] [Indexed: 01/29/2023] Open
Abstract
High-throughput sequencing has facilitated the identification of many types of non-coding RNAs (ncRNAs) involved in diverse cellular processes. NcRNAs as epigenetic mediators play key roles in neuronal development, maintenance, and dysfunction by controlling gene expression at multiple levels. NcRNAs may not only target specific DNA or RNA for gene silence but may also directly interact with chromatin-modifying proteins like Polycomb group (PcG) proteins to drive orchestrated transcriptional programs. Recent significant progress has been made in characterizing ncRNAs and PcG proteins involved in transcriptional, post-transcriptional, and epigenetic regulation. More importantly, dysregulation of ncRNAs, PcG proteins, and interplay among them is closely associated with the pathogenesis of central nervous system (CNS) disorders. In this review, we focus on the interplay between ncRNAs and PcG proteins in the CNS and highlight the functional roles of the partnership during neural development and diseases.
Collapse
Affiliation(s)
- Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shyh-Chang Ng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Pentenero M, Bowers L, Jayasinghe R, Cheong SC, Farah CS, Kerr AR, Alevizos I. World Workshop on Oral Medicine VII: Functional pathways involving differentially expressed lncRNAs in oral squamous cell carcinoma. Oral Dis 2020; 25 Suppl 1:79-87. [PMID: 31140691 DOI: 10.1111/odi.13051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNA) modulate gene expression at the epigenetic, transcriptional and post-transcriptional levels and are involved in tumorigenesis. They can form complex secondary and tertiary structures and have been shown to act as precursors, enhancers, reservoirs and decoys in the complex endogenous RNA network. They were first reported in relation to oral squamous cell carcinoma (OSCC) in 2013. Here, we summarise the functional roles and pathways of the most commonly studied lncRNAs in OSCC. Existing research demonstrates the involvement of lncRNA within pivotal pathways leading to the development and spread of OSCC, including interactions with key cancer-associated microRNAs such as miR-21. The number of studies on lncRNA and OSCC remains limited in this new field. As evidence grows, the tissue-specific expression patterns of lncRNAs should further advance our understanding of the altered regulatory networks in OSCC and possibly reveal new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Monica Pentenero
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Leah Bowers
- Department of Stomatology, Division of Oral Medicine, Medical University of South Carolina, Charleston, Charleston, SC, USA
| | - Ruwan Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya,, Selangor, Malaysia
| | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, UWA Dental School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | - Ilias Alevizos
- Sjogren's Syndrome and Salivary Gland Dysfunction Unit, NIDCR/NIH, Bethesda, MD, USA
| |
Collapse
|
32
|
Deng Y, Zhou L, Li N, Wang M, Yao L, Dong S, Zhang M, Yang P, Hao Q, Wu Y, Lyu L, Jin T, Dai Z, Kang H. Impact of four lncRNA polymorphisms (rs2151280, rs7763881, rs1136410, and rs3787016) on glioma risk and prognosis: A case-control study. Mol Carcinog 2019; 58:2218-2229. [PMID: 31489712 DOI: 10.1002/mc.23110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Long noncoding RNA (lncRNA) polymorphisms are reportedly in connection with tumor susceptibility and prognosis. Glioma is one of the most aggressive and common cancers of the central nervous system. This study aimed to investigate the relationship between four lncRNA variants and glioma susceptibility and prognosis in a Chinese Han population. Sequenom Mass-ARRAY was used to genotype 605 patients with glioma and 1300 cancer-free individuals. Odds ratios or hazard ratios and related 95% confidence intervals were calculated to estimate the correlations. Logistic and Cox regression models, log-rank tests, and Kaplan-Meier curves were used for the statistical analysis. Six inheritance models showed that ANRIL rs2151280 variant genotype (A>G) was related to the susceptibility of glioma, while the other three lncRNAs showed no association. Patients treated with temozolomide or nimustine had better progression-free survival (PFS) and overall survival (OS) than those treated with platinum. Besides, patients aged older than 40 years showed a poorer OS. The Cox multivariate analysis revealed that the rs1136410 GG genotype (A>G) was beneficial for OS and PFS. The Kaplan-Meier analyses indicated that rs1136410 A>G and the rs7763881 A>C were associated with longer OS. ANRIL rs2151280 variant genotype might increase susceptibility of glioma. In addition, PARP1 rs1136410 variant genotype could be beneficial for the overall survival of patients with glioma. More research data are needed to further validate our results.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Lyu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Huang T, Wang M, Huang B, Chang A, Liu F, Zhang Y, Jiang B. Long noncoding RNAs in the mTOR signaling network: biomarkers and therapeutic targets. Apoptosis 2019; 23:255-264. [PMID: 29556906 DOI: 10.1007/s10495-018-1453-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As an evolutionarily conserved serine/threonine kinase of the phosphoinositide 3-kinase (PI3K) related kinase family, the mechanistic/mammalian target of rapamycin (mTOR) plays vital roles in the PI3K/AKT/mTOR pathway, participating in different cellular processes including cell survival, metabolism and proliferation. Aberrant activity of this signaling pathway may lead to oncogenesis. Over the last two decades, great progress has been made in the understanding of mTOR activation and how its response is counteracted for maintaining tissue homeostasis. Besides regulatory proteins and microRNAs, long noncoding RNA (lncRNA) is another emerging critical layer of the intricate modulatory architecture for the control of the mTOR signaling circuit. Also, the production of numerous lncRNAs is induced by mTOR treatment. These findings offer new perspectives for designing novel diagnostic and therapeutic strategies. In this review, we summarize the interactions between the mTOR signaling pathway and lncRNAs in the development and progression of various types of tumors, focusing on the mechanisms of these interactions, and also discuss the potential use of lncRNAs as biomarkers and therapeutic targets for malignancies.
Collapse
Affiliation(s)
- Tinglei Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Meiling Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Bo Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Augustus Chang
- Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China.
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China.
| |
Collapse
|
34
|
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol Lett 2019; 18:4393-4402. [PMID: 31611948 PMCID: PMC6781668 DOI: 10.3892/ol.2019.10848] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA sequences >200 nucleotides in length that have no protein-coding capacity. lncRNAs serve key roles in multiple biological processes, such as tumorigenesis and tumor progression. Taurine upregulated 1 (TUG1) is a novel lncRNA that has been associated with human cancer. TUG1 has attracted increasing attention in recent years and has been documented to be abnormally expressed in different types of cancer. Numerous studies indicate that TUG1 may be significantly associated with tumor development and cell metabolism by regulating cell proliferation, invasion, metastasis, apoptosis, differentiation and drug resistance. TUG1 exerts its function via recruiting specific RNA-binding proteins, promoting target gene expression, influencing tumor angiogenesis and by functioning as a competing endogenous RNA (ceRNA). An increasing number of studies have demonstrated that ceRNAs serve a role in cancer development. TUG1 is considered to be a biomarker or a novel therapeutic target for the diagnosis and prognosis of different cancer types. The present review focuses on recent developments in the major underlying molecular mechanisms of TUG1 in cancer, including its role in cell proliferation, apoptosis, migration, invasion and drug resistance. Also discussed in the present review is the current knowledge regarding the regulation of TUG1.
Collapse
Affiliation(s)
- Hui Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lina Sun
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
35
|
Wang ZF, Liao F, Wu H, Dai J. Glioma stem cells-derived exosomal miR-26a promotes angiogenesis of microvessel endothelial cells in glioma. J Exp Clin Cancer Res 2019; 38:201. [PMID: 31101062 PMCID: PMC6525364 DOI: 10.1186/s13046-019-1181-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), which are involved in cancer initiation and metastasis, could potentially release exosomes that mediate cellular communication by delivering microRNAs (miRNAs). Based on the role of miR-26a in angiogenesis of glioma, our study was performed to investigate whether glioma stem cells (GSCs)-derived exosomes containing miR-26a could exert effects on angiogenesis of microvessel endothelial cells in glioma, in order to provide a new therapeutic RNA vehicle for glioma therapies. METHODS The expression of miR-26a and PTEN in glioma was quantified and the interaction among miR-26a, PTEN and PI3K/Akt signaling pathway was examined. Next, a series of gain- and loss-of function experiments were conducted to determine the role of miR-26a in angiogenesis of human brain microvascular endothelial cells (HBMECs). Subsequently, HBMECs were exposed to exosomes derived from GSCs with the gain-/loss-of-function of miR-26a. Finally, the effect of exosomal miR-26a on angiogenesis of HBMECs was assessed both in vitro and in vivo. RESULTS The results revealed that PTEN was down-regulated, while miR-26a was up-regulated in glioma. miR-26a activated the PI3K/Akt signaling pathway by targeting PTEN. Restored miR-26a promoted proliferation, migration, tube formation, and angiogenesis of HBMECs in vitro. In addition, GSCs-derived exosomes overexpressing miR-26a contributed to enhanced proliferation and angiogenesis of HBMECs in vitro through inhibition of PTEN. The angiogenic effects of GSCs-derived exosomes overexpressing miR-26a in vivo were consistent with the above-mentioned in vitro findings. CONCLUSION Collectively, our study demonstrates that GSCs-derived exosomal miR-26a promotes angiogenesis of HBMECs, highlighting an angiogenic role of miR-26a via exosomes.
Collapse
Affiliation(s)
- Zhi-Fei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013 Hunan Province People’s Republic of China
| | - Fan Liao
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013 Hunan Province People’s Republic of China
| | - Hao Wu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013 Hunan Province People’s Republic of China
| | - Jin Dai
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013 Hunan Province People’s Republic of China
| |
Collapse
|
36
|
Liu S, Liu LH, Hu WW, Wang M. Long noncoding RNA TUG1 regulates the development of oral squamous cell carcinoma through sponging miR-524-5p to mediate DLX1 expression as a competitive endogenous RNA. J Cell Physiol 2019; 234:20206-20216. [PMID: 30980391 DOI: 10.1002/jcp.28620] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) exerts a potential regulatory role in tumorigenesis. LncRNA TUG1 expression remains high in oral squamous cell carcinoma (OSCC) tissues. However, its biological mechanism in OSCC remains unknown. In this study, TUG1 expression in OSCC cells was detected by quantitative real-time polymerase chain reaction. Proliferative and migratory potentials of OSCC cells were determined by Cell Counting Kit 8, 5-Ethynyl-2'- deoxyuridine (EdU), and Transwell assay, respectively. We identified the potential target of TUG1 through bioinformatics and dual-luciferase reporter gene assay. Furthermore, their interaction and functions in regulating the development of OSCC were clarified by western blot and RNA immunoprecipitation assay. Our results demonstrated a high expression of TUG1 in OSCC cells. Overexpression of TUG1 markedly accelerated proliferative and migratory potentials of OSCC cells. Besides, TUG1 could positively regulate the expression of distal-less homeobox 1 (DLX1) by competing with miR-524-5p. These results indicated that TUG1 participated in the development of OSCC as a competing endogenous RNA to competitively bind to miR-524-5p and thus mediate DLX1 expression.
Collapse
Affiliation(s)
- Shuyan Liu
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li-Hong Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Wei Hu
- Department of Stomatology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Meng Wang
- Department of Rehabilitation, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
37
|
Ghaforui-Fard S, Vafaee R, Taheri M. Taurine-upregulated gene 1: A functional long noncoding RNA in tumorigenesis. J Cell Physiol 2019; 234:17100-17112. [PMID: 30912122 DOI: 10.1002/jcp.28464] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Taurine-upregulated gene 1 (TUG1) is a 7.1 kb long noncoding RNA (lncRNA) first recognized in 2005 as an important element for retinal development in rodents. Subsequently, this lncRNA has been shown to participate in oncogenic processes through alteration in chromatin structure, sponging microRNAs, and affecting the expression of some cancer-related pathways. While most of the studies have revealed an oncogenic role for this lncRNA, some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In triple negative breast cancer samples, the expression of this lncRNA has been decreased. Besides, its expression has been higher in HER2-enriched and basal-like subtypes compared with luminal A. In the current review, we discuss the latest literature about the expression pattern and functional roles of TUG1 in diverse cancer types. In addition, its role in epithelial-mesenchymal transition and activation of Wnt/β-catenin pathway in human malignancies will be explored.
Collapse
Affiliation(s)
- Soudeh Ghaforui-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Wang Y, Liu G, Ren L, Wang K, Liu A. Long non-coding RNA TUG1 recruits miR‑29c‑3p from its target gene RGS1 to promote proliferation and metastasis of melanoma cells. Int J Oncol 2019; 54:1317-1326. [PMID: 30720136 DOI: 10.3892/ijo.2019.4699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/10/2018] [Indexed: 11/06/2022] Open
Abstract
Melanoma is an aggressive type of skin cancer, characterized by high mortality rates worldwide. Therefore, the identification of new diagnostic markers and therapeutic targets for melanoma is imperative. Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) play important roles in tumor initiation and progression. It was recently reported that the expression of lncRNA taurine upregulated 1 (TUG1) was relatively higher in cancer compared with that in normal cells, and that TUG1 promoted the progression of various cancers. However, the pattern of expression and mechanism of action of TUG1 in melanoma remain unclear. The aim of the present study was to investigate whether TUG1 expression is relatively higher in melanoma tissues and whether this expression is correlated with poor overall survival. Knockdown of TUG1 was found to suppress melanoma cell growth and metastasis and induce cell apoptosis. By contrast, the overexpression of TUG1 promoted the growth and metastasis of melanoma cells, and inhibited their apoptosis. In addition, the results of the present study indicated that TUG1 sequestered endogenous miR‑29c‑3p and that it was able to suppress its expression. Furthermore, it was observed that miR‑29c‑3p could reverse the promoting effect of TUG1 on melanoma progression, which may be associated with the positive regulation of regulator of G-protein signaling 1 (RGS1), a target gene of miR‑29c‑3p. Taken together, the data of the present study demonstrated that TUG1 promoted proliferation and invasion and suppressed apoptosis in melanoma cells by regulating miR‑29c‑3p and its target gene, RGS1. Therefore, lncRNA TUG1 appears to be a promising diagnostic marker for melanoma patients.
Collapse
Affiliation(s)
- Yanqian Wang
- Department of Dermatology, Xinxiang Central Hospital, Xinxiang, Henan 45300, P.R. China
| | - Gang Liu
- Department of Dermatology, Jiaozuo People's Hospital, Jiaozuo, Henan 454001, P.R. China
| | - Lin Ren
- Wound Diagnosis and Treatment Center, Xinxiang Central Hospital, Xinxiang, Henan 45300, P.R. China
| | - Kun Wang
- Department of Dermatology, Jiaozuo Second People's Hospital, Jiaozuo, Henan 454000, P.R. China
| | - Aimin Liu
- Department of Dermatology, Henan Traditional Chinese Medicine Hospital, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
39
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
40
|
He Y, Li M, Wujisiguleng, Lv B, Huan Y, Liu B, Wang D, Yu H, Zhang L, Shi Z. Zhenbao Pill reduces Treg cell proportion in acute spinal cord injury rats by regulating TUG1/ miR-214/HSP27 axis. Biosci Rep 2018; 38:BSR20180895. [PMID: 30287503 PMCID: PMC6239275 DOI: 10.1042/bsr20180895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Acute spinal cord injury (SCI) is one of the weakest pathologies that seriously affect the quality of life of patients. Objective: To study the mechanism of how Zhenbao Pill reduces Treg cell proportion and improves acute SCI. Methods: A rat SCI model was established. Flow cytometry analysis was performed to determine the Treg cell proportion. RNA immunoprecipitation (RIP) and RNA pull-down were applied in confirming taurine up-regulated gene 1 (TUG1) and miR-214 binding. Intrathecal injection of TUG1 siRNA was also conducted to determine the effect of TUG1 in vivoResults: Zhenbao Pill promoted the expression of TUG1 and heat shock protein 27 (HSP27) protein, and reduced the expression of miR-214 and forkhead box protein p3 (Foxp3) as well as Treg cell proportion in a concentration-dependent manner in SCI rats or in vitro cultured CD4+ T cells. Knockdown of TUG1 reversed the high protein expression of HSP27 and the inhibition of Treg cell proportion as well as Foxp3 protein induced by Zhenbao Pill, and miR-214 inhibitor canceled the TUG1 knockdown effect. Further, miR-214 mimic reversed the inhibition of Treg cell proportion and Foxp3 protein expression by Zhenbao Pill, which was abolished by the overexpression of HSP27. The mechanism was validated in animal experiments. Conclusion: Zhenbao Pill regulated TUG1/miR-214/HSP27 signaling pathway to reduce Treg cell proportion and thus relieve acute SCI.
Collapse
Affiliation(s)
- Yongxiong He
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Mingdong Li
- Department of Orthopaedics and Traumatology, Hainan General Hospital, Haikou 570311, Hainan, China
| | - Wujisiguleng
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Bokang Lv
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Yanqiang Huan
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, Inner Mongolia, China
| | - Bin Liu
- Department of Orthopedic Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia, China
| | - Dongsheng Wang
- Department of Orthopedic Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia, China
| | - Hai Yu
- Department of Orthopedic Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia, China
| | - Liansheng Zhang
- Department of Orthopedic Surgery, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia, China
| | - Zhiqiang Shi
- Department of Emergency Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, Inner Mongolia, China
| |
Collapse
|
41
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
42
|
Li W, Zhang T, Guo L, Huang L. Regulation of PTEN expression by noncoding RNAs. J Exp Clin Cancer Res 2018; 37:223. [PMID: 30217221 PMCID: PMC6138891 DOI: 10.1186/s13046-018-0898-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) triggers a battery of intracellular signaling pathways, especially PI3K/Akt, playing important roles in the pathogenesis of multiple diseases, such as cancer, neurodevelopmental disorders, cardiovascular dysfunction and so on. Therefore PTEN might be a biomarker for various diseases, and targeting the abnormal expression level of PTEN is anticipated to offer novel therapeutic avenues. Recently, noncoding RNAs (ncRNAs) have been reported to regulate protein expression, and it is definite that PTEN expression is controlled by ncRNAs epigenetically or posttranscriptionally as well. Herein, we provide a review on current understandings of the regulation of PTEN by ncRNAs, which could contribute to the development of novel approaches to the diseases with abnormal expression of PTEN.
Collapse
Affiliation(s)
- Wang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China
| |
Collapse
|
43
|
Exploring Long Noncoding RNAs in Glioblastoma: Regulatory Mechanisms and Clinical Potentials. Int J Genomics 2018; 2018:2895958. [PMID: 30116729 PMCID: PMC6079499 DOI: 10.1155/2018/2895958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Gliomas are primary brain tumors presumably derived from glial cells. The WHO grade IV glioblastoma (GBM), characterized by rapid cell proliferation, easily recrudescent, high morbidity, and mortality, is the most common, devastating, and lethal gliomas. Molecular mechanisms underlying the pathogenesis and progression of GBMs with potential diagnostic and therapeutic value have been explored industriously. With the advent of high-throughput technologies, numerous long noncoding RNAs (lncRNAs) aberrantly expressed in GBMs were discovered recently, some of them probably involved in GBM initiation, malignant progression, relapse and resistant to therapy, or showing diagnostic and prognostic value. In this review, we summarized the profile of lncRNAs that has been extensively investigated in glioma research, with a focus on their regulatory mechanisms. Then, their diagnostic, prognostic, and therapeutic implications were also discussed.
Collapse
|
44
|
Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, Caltabiano R, Barbagallo D, Biondi A, Cappellani A, Basile F, Di Pietro C, Purrello M, Ragusa M. LncRNA UCA1, Upregulated in CRC Biopsies and Downregulated in Serum Exosomes, Controls mRNA Expression by RNA-RNA Interactions. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:229-241. [PMID: 30195762 PMCID: PMC6023947 DOI: 10.1016/j.omtn.2018.05.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) contribute to the onset of many neoplasias through RNA-RNA competitive interactions; in addition, they could be secreted by cancer cells into biological fluids, suggesting their potential diagnostic application. By analyzing the expression of 17 lncRNAs and 31 circRNAs in biopsies and serum exosomes from colorectal cancer (CRC) patients through qRT-PCR, we detected CCAT1, CCAT2, HOTAIR, and UCA1 upregulation and CDR1AS, MALAT1, and TUG1 downregulation in biopsies. In serum exosomes, UCA1 was downregulated, while circHIPK3 and TUG1 were upregulated. Combined receiver operating characteristic (ROC) curves of TUG1:UCA1 and circHIPK3:UCA1 showed high values of sensitivity and specificity. Through in vitro (i.e., RNA silencing and mitogen-activated protein kinase [MAPK] inhibition) and in silico analyses (i.e., expression correlation and RNA-RNA-binding prediction), we found that UCA1 could (1) be controlled by MAPKs through CEBPB; (2) sequester miR-135a, miR-143, miR-214, and miR-1271, protecting ANLN, BIRC5, IPO7, KIF2A, and KIF23 from microRNA (miRNA)-induced degradation; and (3) interact with mRNA 3'-UTRs, preventing miRNA binding. UCA1 and its co-regulated antisense LINC01764 could interact and reciprocally mask their own miRNA-binding sites. Functional enrichment analysis of the RNA-RNA network controlled by UCA1 suggested its potential involvement in cellular migration. The UCA1 regulatory axis would represent a promising target to develop innovative RNA-based therapeutics against CRC.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Duilia Brex
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Magnano
- Digestive Endoscopy Service, Vittorio Emanuele Hospital, Catania 95124, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania 95123, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Alessandro Cappellani
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Francesco Basile
- Department of Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics G. Sichel, University of Catania, Catania 95123, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina (EN) 94018, Italy.
| |
Collapse
|
45
|
Zhang Y, Xu Y, Feng L, Li F, Sun Z, Wu T, Shi X, Li J, Li X. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers. Oncotarget 2018; 7:64148-64167. [PMID: 27580177 PMCID: PMC5325432 DOI: 10.18632/oncotarget.11637] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis.
Collapse
Affiliation(s)
- Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zeguo Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tan Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Li
- Department of Ultrasonic Medicine, The 1st Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
46
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
47
|
Long Non-Coding RNA TUG1 Expression Is Associated with Different Subtypes in Human Breast Cancer. Noncoding RNA 2017; 3:ncrna3040026. [PMID: 29657297 PMCID: PMC5831912 DOI: 10.3390/ncrna3040026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Taurine upregulated 1 gene (TUG1) is a long non-coding RNA associated with several types of cancer. Recently, differential expression of TUG1 was found in cancerous breast tissues and associated with breast cancer malignancy features. Although this is evidence of a potential role in breast cancer, TUG1 expression could not be associated with different subtypes, possibly due to the small number of samples analyzed. Breast cancer is a heterogeneous disease and, based on molecular signatures, may be classified into different subtypes with prognostic implications. In the present study, we include analysis of TUG1 expression in 796 invasive breast carcinoma and 105 normal samples of RNA sequencing (RNA-seq) datasets from The Cancer Genome Atlas (TCGA) and describe that TUG1 expression is increased in HER2-enriched and basal-like subtypes compared to luminal A. Additionally, TUG1 expression is associated with survival in HER2-enriched patients. These results reinforce the importance of TUG1 in breast cancer and outline its potential impact on specific subtypes.
Collapse
|
48
|
Zhong Y, Chen Z, Guo S, Liao X, Xie H, Zheng Y, Cai B, Huang P, Liu Y, Zhou Q, Liu Y, Huang W. TUG1, SPRY4-IT1, and HULC as valuable prognostic biomarkers of survival in cancer: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2017; 96:e8583. [PMID: 29145271 PMCID: PMC5704816 DOI: 10.1097/md.0000000000008583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) are involved in the development and progression of various cancers. Accumulating evidences indicated that expression of lncRNAs was related to the prognosis of tumors. METHODS Here, 3 well-known lncRNAs associated with cancer were gathered to prove the potential role of lncRNAs as novel predictors of survival in human cancer. This meta-analysis collected all eligible studies about TUG1, SPRY4-IT1, and HULC and explored the relationship between lncRNAs expression and lymph node metastasis (LNM) or overall survival (OS). A comprehensive, computerized literature search was undertaken by using PubMed, EMBASE, Cochrane Library, and Web of Science (up to October 10, 2017). Strength of association between 3 lncRNAs and cancer prognosis was assessed by computing the hazard ratios (HR) with its corresponding 95% confidence interval (CI). According to the inclusion and exclusion criteria, respectively, 10, 9, and 7 studies of 3 lncRNAs were included in this meta-analysis. RESULTS In the current meta-analysis, it could be concluded that the expression of these 3 lncRNAs in tumor tissues is not a direct evidence of LNM. In general, there was a significant negative correlation between TUG1 levels and OS time (pooled HR 1.54, 95% CI 1.06-2.24), SPRY4-IT1 levels and OS time (pooled HR 2.12, 95% CI 1.58-2.86) and HULC levels and OS time (pooled HR 2.10, 95% CI 1.18-3.73). It could be revealed from the result that high level expression of these 3 lncRNAs might be correlated with a bad prognosis. CONCLUSIONS In conclusion, the current meta-analysis demonstrated that TUG1, SPRY4-IT1, and HULC might serve as a moderate predictor of survival in human cancer.
Collapse
Affiliation(s)
- Yucheng Zhong
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| | - Zhicong Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University, National Urological Cancer Centre, Beijing
| | - Shuyuan Guo
- Shantou University Medical College, Shantou, China
| | - Xinhui Liao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| | - Haibiao Xie
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| | - Yien Zheng
- Shantou University Medical College, Shantou, China
| | - Bin Cai
- Shantou University Medical College, Shantou, China
| | | | - Yuhan Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| | - Qun Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen
| |
Collapse
|
49
|
Li C, Gao Y, Li Y, Ding D. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem Biophys Res Commun 2017; 491:552-557. [PMID: 28302487 DOI: 10.1016/j.bbrc.2017.03.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/12/2017] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy, most of which remain unresponsive to chemotherapy. Methotrexate (MTX) is one of the earliest cytotoxic drugs and serves as an anti-metabolite and anti-folate chemotherapy for various types of cancer. However, MTX resistance prevents its clinical application in cancer therapy. Thereby, overcoming the drug resistance is an alternative strategy to maximize the efficacy of MTX therapies in clinics. Long non-coding RNAs (lncRNAs) have gained widespread attention in recent years. More and more evidences have shown that lncRNAs play regulatory roles in various biological activities and disease progression including drug resistance in cancer cells. Here, we observed lncRNA TUG1 was associated to the MTX resistant in colorectal cancer cells. Firstly, quantitative analysis indicated that TUG1 was significantly increased in tumors which were resistant to MTX treatment. TUG1 knockdown re-sensitized the MTX resistance in colorectal cancer cells, which were MTX-resistant colorectal cell line. Furthermore, bioinformatics analysis showed that miR-186 could directly bind to TUG1, suggesting TUG1 might worked as a ceRNA to sponge miR-186. Extensively, our study also showed that CPEB2 was the direct target of miR-186 in colorectal cancer cells. Taken together, our study suggests that lncRNA TUG1 mediates MTX resistance in colorectal cancer via miR-186/CPEB2 axis.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Yongchao Li
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Dayong Ding
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China.
| |
Collapse
|
50
|
Kondo Y, Shinjo K, Katsushima K. Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci 2017; 108:1927-1933. [PMID: 28776911 PMCID: PMC5623749 DOI: 10.1111/cas.13342] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Recent studies have described the important multiple roles of long non‐coding RNAs (lncRNAs) during oncogenic transformation. Because the coding genome accounts for a small amount of total DNA, and many mutations leading to cancer occur in the non‐coding genome, it is plausible that the dysregulation of such non‐coding transcribes might also affect tumor phenotypes. Indeed, to date, lncRNAs have been reported to affect diverse biological processes through the regulation of mRNA stability, RNA splicing, chromatin structure, and miRNA‐mediated gene regulation by acting as miRNA sponges. Furthermore, accumulating studies have described the roles of lncRNAs in tumorigenesis; however, the precise mechanisms of many lncRNAs are still under investigation. Here, we discuss recently reported mechanistic insights into how lncRNAs regulate gene expression and contribute to tumorigenesis through interactions with other regulatory molecules. We especially highlight the role of taurine upregulated gene 1, which was recently reported to have biological functions related to gene regulation, and discuss the future clinical implications of lncRNAs in cancer treatments.
Collapse
Affiliation(s)
- Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Katsushima
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|