1
|
Huang C, Liang C, Tong J, Zhong X, Luo L, Liang L, Wen Y, Zhong L, Deng J, Peng M, Wu W, Huang W, Xie A, Huang Y, Chen J. Soluble E-cadherin participates in BLM-induced pulmonary fibrosis by promoting EMT and lung fibroblast migration. ENVIRONMENTAL TOXICOLOGY 2024; 39:435-443. [PMID: 37792543 DOI: 10.1002/tox.23986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Soluble E-cadherin (sE-cad) is an 80 kDa fragment derived from E-cadherin that is shed from the cell surface through proteolytic cleavage and is a biomarker in various cancers that promotes invasion and migration. Alveolar epithelial destruction, aberrant lung fibroblast migration and inflammation contribute to pulmonary fibrosis. Here, we hypothesized that E-cadherin plays an important role in lung fibrosis. In this study, we found that E-cadherin was markedly increased in the bronchoalveolar lavage fluid (BALF) and serum of mice with pulmonary fibrosis and that blocking sE-cad with HECD-1, a neutralizing antibody targeting the ectodomain of E-cadherin, effectively inhibited myofibroblast accumulation and collagen deposition in the lungs after bleomycin (BLM) exposure. Moreover, transforming growth factor-β (TGF-β1) induced the shedding of sE-cad from A549 cells, and treatment with HECD-1 inhibited epithelial-mesenchymal transition (EMT) stimulated by TGF-β1. Fc-E-cadherin (Fc-Ecad), which is an exogenous form of sE-cad, robustly promoted lung fibroblast migration. E-cadherin participates in bleomycin (BLM)-induced lung fibrosis by promoting EMT in the alveolar epithelium and fibroblast activation. E-cadherin may be a novel therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Congmin Liang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jinzhai Tong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Xueying Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Liping Liang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Yuting Wen
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Liandi Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jiongrui Deng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Ming Peng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Weiliang Wu
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Weijian Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Anlun Xie
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
2
|
Li W, Xue L, Peng C, Zhao P, Peng Y, Chen W, Wang W, Shen J. PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, relieves airway hyperresponsiveness, mucus hypersecretion and inflammation in a murine asthma model. Mol Med 2023; 29:154. [PMID: 37936054 PMCID: PMC10629066 DOI: 10.1186/s10020-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.
Collapse
Affiliation(s)
- Wei Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lu Xue
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Changsi Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ping Zhao
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yongbo Peng
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
3
|
Huang C, Zheng D, Fu C, Cai Z, Zhang H, Xie Z, Luo L, Li H, Huang Y, Chen J. Secreted S100A4 causes asthmatic airway epithelial barrier dysfunction induced by house dust mite extracts via activating VEGFA/VEGFR2 pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:1431-1444. [PMID: 36883729 DOI: 10.1002/tox.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Dongyan Zheng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunlai Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhefan Xie
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huifang Li
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
5
|
Hong T, Park H, An G, Song G, Lim W. Ethalfluralin induces developmental toxicity in zebrafish via oxidative stress and inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158780. [PMID: 36115403 DOI: 10.1016/j.scitotenv.2022.158780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Ethalfluralin, of dinitroaniline herbicide family, is an effective weed controller. Following residue detection in herbicide-treated fields, ethalfluralin was reported to interfere with early stages of implantation in some vertebrate species. However, the role of ethalfluralin in the development of zebrafish embryos has not been elucidated yet. Therefore, in the present study, we investigated the morphological and physiological changes that occur in the embryonic development of zebrafish due to ethalfluralin exposure. Results indicated that ethalfluralin decreased survival rate along with reduction in the hatching ratio and heartbeat. It was observed to cause edema in the heart and yolk sac, and apoptosis in the anterior region of the developing zebrafish larvae; as visualized through acridine orange and TUNEL staining. In addition, ethalfluralin increased the expression of the apoptosis-associated genes including tp53, cyc1, casp8, casp9, and casp3. The Seahorse Mito Stress analysis revealed that ethalfluralin slightly reduced mitochondrial respiration in live zebrafish embryos. Reactive oxygen species (ROS) production was also observed to be elevated in zebrafish larvae in response to ethalfluralin. Treatment with ethalfluralin decreased blood vessel formation in brain and intestine in flk1 transgenic zebrafish embryos. The decrease in angiogenesis related gene expression was specifically observed in vegfc, flt1, and kdrl, and in the intestinal vasculature related genes apoa4a, aqp3, fabp2, and vil1. Moreover, an increase in inflammatory genes such as cox2a, cox2b, cxcl-c1c, il8, mcl1a, mcl1b, and nf-κb was observed using real-time PCR analysis. Collectively, these results indicate that oxidative stress generated by exposure to ethalfluralin induced ROS generation, apoptosis, inflammation and anti-angiogenic effects, and therefore, ethalfluralin may be toxic to the development of zebrafish embryos.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Bolandi SM, Abdolmaleki Z, Assarehzadegan MA. Anti-angiogenic Properties of Bevacizumab Improve Respiratory System Inflammation in Ovalbumin-Induced Rat Model of Asthma. Inflammation 2021; 44:2463-2475. [PMID: 34420156 PMCID: PMC8380193 DOI: 10.1007/s10753-021-01516-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Studies on the bronchial vascular bed have revealed that the number of blood vessels in the lamina propria and under the mucosa of the lung tissue increases in patients suffering from mild to severe asthma. Thus, in this study, a new strategy was employed in respiratory system disorders by angiogenesis inhibition in an ovalbumin (OVA)-induced rat model of asthma. Twenty-one male Wistar albino rats, 8 weeks old, were randomly divided into three groups (n = 7 in each group), including (1) control group, (2) OVA-treated group, and (3) OVA + Bmab (bevacizumab drug). On days 1 and 8, 1 mg of OVA and aluminum hydroxide in sterile phosphate-buffered saline (PBS) were intraperitoneally injected to rats in groups 2 and 3. The control group was only subject to intraperitoneal injection of saline on days 1 and 8. One week after the last injection, the rats (groups 2 and 3) were exposed to OVA inhalation for 30 min at 2-day intervals from days 15 to 25. After sensitization and challenge with OVA, the OVA + Bmab group (group 3) were treated with a 5 mg/kg bevacizumab drug. Genes and protein expression of IL-1β and TNF-α and the expression of vascular endothelial growth factor (VEGF) protein were assessed by real-time PCR and immunohistochemistry respectively, in lung tissue. OVA exposure increased mucosal secretion and inflammatory cell populations in lung tissue and OVA-specific IgE level in serum. Also, VEGF and cytokine factor expression were significantly elevated in the OVA-induced asthma model (p ≤ 0.05). However, rats in OVA + Bmab group showed significantly a decrease in VEGF and IL-1β and TNF-α genes as well as proteins (p ≤ 0.05). The results showed that bevacizumab efficiently diminished bronchial inflammation via downregulation of VEGF expression, followed by inflammatory cells population and cytokines reduction. Angiogenesis inhibition in rats with induced asthma not only suppresses the inflammatory process through blocking VEGF expression but also inhibits the development of new blood vessels and progressing asthmatic attacks.
Collapse
Affiliation(s)
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran.
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Türkeli A, Yilmaz Ö, Karaman M, Kanik ET, Firinci F, İnan S, Yüksel H. Anti-VEGF treatment suppresses remodeling factors and restores epithelial barrier function through the E-cadherin/β-catenin signaling axis in experimental asthma models. Exp Ther Med 2021; 22:689. [PMID: 33986854 PMCID: PMC8112133 DOI: 10.3892/etm.2021.10121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Besides maintaining a physical barrier with adherens junctional (AJ) and tight junctional proteins, airway epithelial cells have important roles in modulating the inflammatory processes of allergic asthma. E-cadherin and β-catenin are the key AJ proteins that are involved in airway remodeling. Various mediators such as transforming growth factor-β (TGF-β), epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), tumor necrosis factor-α (TNF-α) and angiogenic factors, such as vascular endothelial growth factor (VEGF), are released by the airway epithelium in allergic asthma. The signaling pathways activated by these growth factors trigger epithelial-mesenchymal transition (EMT), which contributes to fibrosis and subsequent downregulation of E-cadherin. The present study used a mouse asthma model to investigate the effects of anti-VEGF, anti-TNF and corticosteroid therapies on growth factor and E-cadherin/β-catenin expression. The study used 38 male BALB/c mice, divided into 5 groups. A chronic mouse asthma model was created by treating 4 of the groups with inhaled and intraperitoneal ovalbumin (n= 8 per group). Saline, anti-TNF-α (etanercept), anti-VEGF (bevacizumab) or a corticosteroid (dexamethasone) were applied to each group by intraperitoneal injection. No medication was administered to the control group (n=6). Immunohistochemistry for E-cadherin, β-catenin and growth factors was performed on lung tissues and protein expression levels assessed using H-scores. Statistically significant differences were observed in E-cadherin, β-catenin, EGF, FG, and PFGF (P<0.001 for all) as well as the IGF H-scores between the five groups (P<0.005). Only anti-VEGF treatment caused E-cadherin and β-catenin levels to increase to the level of non-asthmatic control groups (P>0.005). All treatment groups had reduced TGF-β, PDGF and FGF H-scores in comparison with the untreated asthma group (P=0.001). The EGF and IGF levels were not significantly different between the untreated asthmatic and non-asthmatic controls. The results suggested that anti-VEGF and TNF-α inhibition treatments are effective in decreasing growth factors, in a similar manner to conventional corticosteroid treatments. Anti-VEGF and TNF inhibition therapy may be an effective treatment for remodeling in asthma while offering an alternative therapeutic option to steroid protective agents. The data suggested that anti-VEGF treatment offered greater restoration of the epithelial barrier than both anti-TNF-α and corticosteroid treatment.
Collapse
Affiliation(s)
- Ahmet Türkeli
- Department of Pediatric Allergy and Immunology, Kütahya Health Science University Medical Faculty, Kütahya 43050, Turkey
| | - Özge Yilmaz
- Department of Pediatric Allergy and Immunology, Celal Bayar University Medical Faculty, Manisa 45030, Turkey
| | - Meral Karaman
- Multidisciplinary Laboratory, Dokuz Eylül University Medical Faculty, Izmir 35210, Turkey
| | - Esra Toprak Kanik
- Department of Pediatric Allergy and Immunology, Celal Bayar University Medical Faculty, Manisa 45030, Turkey
| | - Fatih Firinci
- Department of Pediatric Allergy and Immunology, Dokuz Eylül University Medical Faculty, Izmir 35210, Turkey
| | - Sevinç İnan
- Department of Histology and Embryology, Izmir University of Economics, Medical Faculty, Izmir 35330, Turkey
| | - Hasan Yüksel
- Department of Pediatric Allergy and Immunology, Celal Bayar University Medical Faculty, Manisa 45030, Turkey
| |
Collapse
|
8
|
Bevacizumab regulates inflammatory cytokines and inhibits VEGFR2 signaling pathway in an ovalbumin-induced rat model of airway hypersensitivity. Inflammopharmacology 2021; 29:683-694. [PMID: 33742375 DOI: 10.1007/s10787-021-00798-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/06/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Bevacizumab with anti-angiogenesis properties reduces the vascular endothelial growth factor (VEGF) level and has widely been used to treat various diseases such as lung diseases and chronic obstructive pulmonary disease (COPD). This study, therefore, aimed to consider the effects of bevacizumab on VEGF receptor 2 (VEGFR2) and lung inflammation of the ovalbumin-induced rat model of airway hypersensitivity. MATERIALS AND METHODS Twenty-one male Wistar rats were randomly divided into 3 groups (n = 7 in each group): (1) control, (2) ovalbumin (OVA)-sensitized, and (3) OVA-sensitized with bevacizumab (OVA + Bmab). Groups 2 and 3 were sensitized with ovalbumin (OVA) and aluminum hydroxide on days 1, 8 and challenged with OVA on day 15 by atomization for 10 days (inhalation). After OVA sensitization, the OVA + Bmab was treated with bevacizumab for 2 weeks. VEGFR2 was semiquantitatively analyzed in the lungs by immunohistochemistry. VEGF was measured in the lung tissue by ELISA method. The mRNA of IL-10 and IL-6 lung tissue were measured by real-time PCR. RESULTS Ovalbumin exposure promoted the expression of VEGF and resulted in inflammatory factors overexpression (p ≤ 0.05). However, rats in OVA + Bmab group showed significantly a decrease in VEGFR2 and IL-1β, IL-6, TNFα, and an increase in IL-10 (p ≤ 0.05). CONCLUSION The results show that bevacizumab efficiently diminishes bronchial inflammation via reducing the expression of VEGFR2, and IL-6 genes and enhancing the expression of IL-10 gene. Hence, bevacizumab could be considered as a potential candidate drug to control pathological conditions relevant to airway hypersensitivity.
Collapse
|
9
|
Laddha AP, Kulkarni YA. VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respir Med 2019; 156:33-46. [PMID: 31421589 DOI: 10.1016/j.rmed.2019.08.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The endothelial cells play a crucial role in the progression of angiogenesis, which causes cell re-modulation, proliferation, adhesion, migration, invasion and survival. Angiogenic factors like cytokines, cell adhesion molecules, growth factors, vasoactive peptides, proteolytic enzymes (metalloproteinases) and plasminogen activators bind to their receptors on endothelial cells and activate the signal transduction pathways like epidermal growth factor receptor (EGFR phosphatidylinositol 3-kinase and (PI3K)/AKT/mammalian target of rapamycin (mTOR) which initiate the process of angiogenesis. Cytokines that stimulate angiogenesis include direct and indirect proangiogenic markers. The direct proangiogenic group of markers consists of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) and hepatocyte growth factor (HGF) whereas the indirect proangiogenic markers include transforming growth factor-beta (TGF-β), interleukin 6 (IL-6), interleukin 8 (IL-8) and platelet-derived growth factor (PDGF). VEGF and FGF-2 are the strongest activators of angiogenesis which stimulate migration and proliferation of endothelial cells in existing vessels to generate and stabilize new blood vessels. VEGF is released in hypoxic conditions as an effect of the hypoxia-inducible factor (HIF-1α) and causes re-modulation and inflammation of bronchi cell. Cell re-modulation and inflammation leads to the development of various lung disorders like pulmonary hypertension, chronic obstructive pulmonary disease, asthma, fibrosis and lung cancer. This indicates that there is a firm link between overexpression of VEGF and FGF-2 with lung disorders. Various natural and synthetic drugs are available for reducing the overexpression of VEGF and FGF-2 which can be helpful in treating lung disorders. Researchers are still searching for new angiogenic inhibitors which can be helpful in the treatment of lung disorders. The present review emphasizes on molecular mechanisms and new drug discovery focused on VEGF and FGF-2 inhibitors and their role as anti-angiogenetic agents in lung disorders.
Collapse
Affiliation(s)
- Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, India.
| |
Collapse
|
10
|
Wu G, Yang L, Xu Y, Jiang X, Jiang X, Huang L, Mao L, Cai S. FABP4 induces asthmatic airway epithelial barrier dysfunction via ROS-activated FoxM1. Biochem Biophys Res Commun 2017; 495:1432-1439. [PMID: 29158087 DOI: 10.1016/j.bbrc.2017.11.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022]
Abstract
Functional abnormal airway epithelial cells, along with activated inflammatory cells, resulting in chronic airway inflammation, are considered as the characteristic of asthma. Fatty Acid Binding Protein 4 (FABP4) takes part in glucose and lipid homeostasis, and also have an important role in allergic airway inflammation. However, whether FABP4 influence barrier function of airway epithelial cells is unknown. In vivo, a HDM-induced murine model of asthma was obtained to assessed airway inflammation and protein expression of E-cadherin and Forkhead Box M1 (FoxM1). In vitro, 16-HBE was cultured and was treated with hrFABP4, siFABP4, FABPF4 inhibitor BMS, or FoxM1 inhibitor RCM-1. IL-4, IL-5, and IL-13 level was determined by ELISA. Transepithelial electrical resistance (TER), paracellular permeability and E-cadherin-special immunofluorescence were measured to value airway epithelial barrier function. Intracellular ROS production was determined by DCF-DA fluorescence. FABP4 inhibitor BMS alleviate airway inflammation and destruction of E-cad in allergic mouse. Treatment with HDM or hrFABP4 aggravated inflammatory response, damaged airway epithelial barrier, which could be inhibited by siFABP4 and BMS. Treatment with HDM or hrFABP4 also enhanced levels of FoxM1, and Inhibited FoxM1 suppressed HDM- and hrFABP4-induced inflammation and airway epithelial barrier dysfunction. In addition, H2O2 promoted FoxM1 expression, HDM and hrFABP4 induced-FoxM1 could be inhibited by NAC, leading to decreased inflammation and improved airway epithelial barrier. Upregulated ROS induced by FABP4 was of significance in activating FoxM1 leading to airway inflammation and epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Gaohui Wu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Shenzhen Luohu People's Hospital, The Third Affiliatied Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Liteng Yang
- Shenzhen Luohu People's Hospital, The Third Affiliatied Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Yi Xu
- Shenzhen Luohu People's Hospital, The Third Affiliatied Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Xiaohong Jiang
- Department of The Geriatric Respiratory, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China
| | - Xiaomin Jiang
- Shenzhen Luohu People's Hospital, The Third Affiliatied Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Lisha Huang
- Shenzhen Luohu People's Hospital, The Third Affiliatied Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Ling Mao
- Shenzhen Luohu People's Hospital, The Third Affiliatied Hospital of Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Shaoxi Cai
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
MBD2 Regulates Th17 Cell Differentiation and Experimental Severe Asthma by Affecting IRF4 Expression. Mediators Inflamm 2017; 2017:6249685. [PMID: 28808358 PMCID: PMC5541825 DOI: 10.1155/2017/6249685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Th17 cells and IL-17 participate in airway neutrophil infiltration characteristics in the pathogenesis of severe asthma. Methyl-CpG binding domain protein 2 (MBD2) expression increased in CD4+ T cells in peripheral blood samples of asthma patients. However, little is known about that epigenetic regulation of MBD2 in both immunological pathogenesis of experimental severe asthma and CD4+ T cell differentiation. Here, we established a neutrophil-predominant severe asthma model, which was characterized by airway hyperresponsiveness (AHR), BALF neutrophil granulocyte (NEU) increase, higher NEU and IL-17 protein levels, and more Th17 cell differentiation. In the model, MBD2 and IRF4 protein expression increased in the lung and spleen cells. Under overexpression or silencing of the MBD2 and IRF4 gene, the differentiation of Th17 cells and IL-17 secretion showed positive changes. IRF4 protein expression showed a positive change with overexpression or silencing of the MBD2 gene, whereas there was no significant difference in the expression of MBD2 under overexpression or silencing of the IRF4 gene. These data provide novel insights into epigenetic regulation of severe asthma.
Collapse
|
12
|
乐 艳, 董 航, 王 燕, 赵 海, 蔡 绍. [Role of epidermal growth factor receptor in house dust mite-induced airway epithelial barrier dysfunction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:737-743. [PMID: 28669945 PMCID: PMC6744144 DOI: 10.3969/j.issn.1673-4254.2017.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the role of epidermal growth factor receptor (EGFR) signaling pathway in bronchial epithelial actin stress fiber (F-actin) rearrangement induced by house dust mite (HDM). METHODS Normal human bronchial epithelial cells (16HBE) were stimulated with HDM with or without pretreatment with AG-1478, an EGFR inhibitor. The levels of phospho(p)-EGFR, F-actin, E-cadherin and β-catenin in the cell cultures were detected with Western blotting. The localizations of F-actin, E-cadherin and β-catenin in the bronchial epithelial cells were determined with immunofluorescence assay, and the transmembrane electrical resistance (TER) and FITC-dextran flux (FITC-DX) in the cells were measured to assess the barrier function of the bronchial epithelia. RESULTS HDM stimulation of the cells for 10 min resulted in significantly increased p-EGFR expression (P<0.05) without causing obvious changes in the expression of E-cadherin (P>0.05) or β-catenin (P>0.05). Immunofluorescence assay revealed delocalization of E-cadherin and β-catenin in HDM-treated 16HBE cells, shown by their diffusion from the cell membrane to the cytoplasm. In HDM-treated cells, the TER was significantly decreased to (70.00∓4.33)% and the FITC-DX was significantly increased to (115.98∓4.34)%; Inhibition of EGFR reversed the delocalization of E-cadherin and β-catenin, improved the TER to (90.00∓3.75)% and lowered the FITC-DX to (101.10∓2.10)%. HDM induced increased expression and rearrangement of F-actin, which was obviously inhibited by pretreatment of the cells with AG-1478 (P<0.05). CONCLUSION EGFR signaling pathway mediates HDM-induced F-actin rearrangement in human bronchial epithelial cells to contribute to epithelial barrier dysfunction.
Collapse
Affiliation(s)
- 艳青 乐
- />南方医科大学南方医院呼吸与危重症医学科,慢性气道疾病实验室,广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 航明 董
- />南方医科大学南方医院呼吸与危重症医学科,慢性气道疾病实验室,广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 燕红 王
- />南方医科大学南方医院呼吸与危重症医学科,慢性气道疾病实验室,广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 海金 赵
- />南方医科大学南方医院呼吸与危重症医学科,慢性气道疾病实验室,广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 绍曦 蔡
- />南方医科大学南方医院呼吸与危重症医学科,慢性气道疾病实验室,广东 广州 510515Laboratory of Chronic Airway Diseases, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Dong HM, Le YQ, Wang YH, Zhao HJ, Huang CW, Hu YH, Luo LS, Wan X, Wei YL, Chu ZQ, Li W, Cai SX. Extracellular heat shock protein 90α mediates HDM-induced bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling. Respir Res 2017; 18:111. [PMID: 28558721 PMCID: PMC5450201 DOI: 10.1186/s12931-017-0593-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Background The disruption and hyperpermeability of bronchial epithelial barrier are closely related to the pathogenesis of asthma. House dust mite (HDM), one of the most important allergens, could increase the airway epithelial permeability. Heat shock protein (Hsp) 90α is also implicated in the lung endothelial barrier dysfunction by disrupting RhoA signaling. However, the effect of extracellular Hsp90α (eHsp90α) on the bronchial epithelial barrier disruption induced by HDM has never been reported. Methods To investigate the involvement of eHsp90α in the bronchial epithelial barrier disruption induced by HDM, normal human bronchial epithelial cell line 16HBE14o- (16HBE) cells were treated by HDM, human recombinant (hr) Hsp90α and hrHsp90β respectively and pretreated by1G6-D7, a specific anti-secreted Hsp90α monoclonal antibody (mAb). Hsp90α-silencing cells were also constructed. To further evaluate the role of RhoA signaling in this process, cells were pretreated by inhibitors of Rho kinase, GSK429286A and Y27632 2HCl. Transepithelial electrical resistance (TEER) and FITC-dextran flux (FITC-DX) were examined as the epithelial barrier function. Expression and localization of adherens junctional proteins E-cadherin and β-catenin were evaluated by western blotting and immunofluorescence respectively. The level of eHsp90α was investigated by concentration and purification of condition media. RhoA activity was determined by using a Rho G-LISA® RhoA activation assay kitTM biochem kit, and the phosphorylation of myosin light chain (MLC), the downstream signal molecule of RhoA, was assessed by western blotting. Results The epithelial barrier disruption and the loss of adherens junctional proteins E-cadherin and β-catenin in cytomembrane were observed in HDM-treated 16HBE cells, paralleled with the increase of eHsp90α secretion. All of which were rescued in Hsp90α-silencing cells or by pretreating 16HBE cells with 1G6-D7. Also, 1G6-D7 suppressed RhoA activity and MLC phosphorylation induced by HDM. Furthermore, inhibitors of Rho kinase prevented and restored the airway barrier disruption. Consistently, it was hrHsp90α instead of hrHsp90β that promoted barrier dysfunction and activated RhoA/MLC signaling in 16HBE cells. Conclusions The eHsp90α mediates HDM-induced human bronchial epithelial barrier dysfunction by activating RhoA/MLC signaling, suggesting that eHsp90α is a potential therapeutic target for treatment of asthma.
Collapse
Affiliation(s)
- Hang-Ming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Qing Le
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Hong Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hai-Jin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chao-Wen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Hui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li-Shan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Lan Wei
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Qiang Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck, Medical Centre, Los Angeles, CA, 90033, USA
| | - Shao-Xi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Hu Y, Dong H, Zou M, Huang C, Luo L, Yu C, Chen J, Xie Z, Zhao H, Le Y, Zou F, Liu L, Cai S. TSLP signaling blocking alleviates E-cadherin dysfunction of airway epithelium in a HDM-induced asthma model. Cell Immunol 2017; 315:56-63. [PMID: 28400057 DOI: 10.1016/j.cellimm.2017.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 02/18/2017] [Indexed: 01/03/2023]
Abstract
Recent studies have indicated that Thymic stromal lymphopoietin (TSLP) plays an important role in the prevention and treatment of asthma. However the role of TSLP in dysfunction of airway epithelial adherens junctions E-cadherin in house dust mite (HDM)-induced asthma has not been addressed. We hypothesized that TSLP contributed to HDM-induced E-cadherin dysfunction in asthmatic BALB/c mice and 16HBE cells. In vivo, a HDM-induced asthma mouse model was set up for 8weeks. Mice inhaled an anti-TSLP monoclonal antibody (mAb) before HDM. The mice treated with the anti-TSLP mAb ameliorated airway inflammation, the decreasing and aberrant distribution of E-cadherin and β-catenin as well as phosphorylation(p)-AKT induced by HDM. In vitro, HDM increased the expression of TSLP and E-cadherin dysfunction by PI3K/Akt signaling pathway. The exposure of 16HBE to TSLP resulted in redistribution of E-cadherin. These results indicate that TSLP may be an important contributor in E-cadherin dysfunction of HDM-induced asthma. TSLP signaling blocking shows a protective effect in mice and that the PI3K/Akt pathway may play a role in this process.
Collapse
Affiliation(s)
- Yahui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengchen Zou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chaowen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lishan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - JiaLong Chen
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhefan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqing Le
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|