1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Pikor D, Hurła M, Słowikowski B, Szymanowicz O, Poszwa J, Banaszek N, Drelichowska A, Jagodziński PP, Kozubski W, Dorszewska J. Calcium Ions in the Physiology and Pathology of the Central Nervous System. Int J Mol Sci 2024; 25:13133. [PMID: 39684844 DOI: 10.3390/ijms252313133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium ions play a key role in the physiological processes of the central nervous system. The intracellular calcium signal, in nerve cells, is part of the neurotransmission mechanism. They are responsible for stabilizing membrane potential and controlling the excitability of neurons. Calcium ions are a universal second messenger that participates in depolarizing signal transduction and contributes to synaptic activity. These ions take an active part in the mechanisms related to memory and learning. As a result of depolarization of the plasma membrane or stimulation of receptors, there is an extracellular influx of calcium ions into the cytosol or mobilization of these cations inside the cell, which increases the concentration of these ions in neurons. The influx of calcium ions into neurons occurs via plasma membrane receptors and voltage-dependent ion channels. Calcium channels play a key role in the functioning of the nervous system, regulating, among others, neuronal depolarization and neurotransmitter release. Channelopathies are groups of diseases resulting from mutations in genes encoding ion channel subunits, observed including the pathophysiology of neurological diseases such as migraine. A disturbed ability of neurons to maintain an appropriate level of calcium ions is also observed in such neurodegenerative processes as Alzheimer's disease, Parkinson's disease, Huntington's disease, and epilepsy. This review focuses on the involvement of calcium ions in physiological and pathological processes of the central nervous system. We also consider the use of calcium ions as a target for pharmacotherapy in the future.
Collapse
Affiliation(s)
- Damian Pikor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Joanna Poszwa
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
3
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
4
|
Maciąg F, Chhikara A, Heine M. Calcium channel signalling at neuronal endoplasmic reticulum-plasma membrane junctions. Biochem Soc Trans 2024; 52:1617-1629. [PMID: 38934485 PMCID: PMC11668288 DOI: 10.1042/bst20230819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Neurons are highly specialised cells that need to relay information over long distances and integrate signals from thousands of synaptic inputs. The complexity of neuronal function is evident in the morphology of their plasma membrane (PM), by far the most intricate of all cell types. Yet, within the neuron lies an organelle whose architecture adds another level to this morphological sophistication - the endoplasmic reticulum (ER). Neuronal ER is abundant in the cell body and extends to distant axonal terminals and postsynaptic dendritic spines. It also adopts specialised structures like the spine apparatus in the postsynapse and the cisternal organelle in the axon initial segment. At membrane contact sites (MCSs) between the ER and the PM, the two membranes come in close proximity to create hubs of lipid exchange and Ca2+ signalling called ER-PM junctions. The development of electron and light microscopy techniques extended our knowledge on the physiological relevance of ER-PM MCSs. Equally important was the identification of ER and PM partners that interact in these junctions, most notably the STIM-ORAI and VAP-Kv2.1 pairs. The physiological functions of ER-PM junctions in neurons are being increasingly explored, but their molecular composition and the role in the dynamics of Ca2+ signalling are less clear. This review aims to outline the current state of research on the topic of neuronal ER-PM contacts. Specifically, we will summarise the involvement of different classes of Ca2+ channels in these junctions, discuss their role in neuronal development and neuropathology and propose directions for further research.
Collapse
Affiliation(s)
- Filip Maciąg
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Arun Chhikara
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
5
|
Hart M, Diener C, Lunkes L, Rheinheimer S, Krammes L, Keller A, Meese E. miR-34a-5p as molecular hub of pathomechanisms in Huntington's disease. Mol Med 2023; 29:43. [PMID: 37013480 PMCID: PMC10295337 DOI: 10.1186/s10020-023-00640-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Although a pivotal role of microRNA (miRNA, miR) in the pathogenesis of Huntington's disease (HD) is increasingly recognized, the molecular functions of miRNAs in the pathomechanisms of HD await further elucidation. One of the miRNAs that have been associated with HD is miR-34a-5p, which was deregulated in the mouse R6/2 model and in human HD brain tissues. METHODS The aim of our study was to demonstrate interactions between miR-34a-5p and HD associated genes. By computational means we predicted 12 801 potential target genes of miR-34a-5p. An in-silico pathway analysis revealed 22 potential miR-34a-5p target genes in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway "Huntington's disease". RESULTS Using our high-throughput miRNA interaction reporter assay (HiTmIR) we identified NDUFA9, TAF4B, NRF1, POLR2J2, DNALI1, HIP1, TGM2 and POLR2G as direct miR-34a-5p target genes. Direct binding of miR-34a-5p to target sites in the 3'UTRs of TAF4B, NDUFA9, HIP1 and NRF1 was verified by a mutagenesis HiTmIR assay and by determining endogenous protein levels for HIP1 and NDUFA9. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis identified protein-protein interaction networks associated with HD like "Glutamine Receptor Signaling Pathway" and "Calcium Ion Transmembrane Import Into Cytosol". CONCLUSION Our study demonstrates multiple interactions between miR-34a-5p and HD associated target genes and thereby lays the ground for future therapeutic interventions using this miRNA.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany.
| | - Caroline Diener
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Laetitia Lunkes
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Stefanie Rheinheimer
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| |
Collapse
|
6
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
7
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
8
|
Zhang S, Zhao J, Quan Z, Li H, Qing H. Mitochondria and Other Organelles in Neural Development and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. Front Neurosci 2022; 16:853911. [PMID: 35450015 PMCID: PMC9016280 DOI: 10.3389/fnins.2022.853911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The contribution of organelles to neural development has received increasing attention. Studies have shown that organelles such as mitochondria, endoplasmic reticulum (ER), lysosomes, and endosomes play important roles in neurogenesis. Specifically, metabolic switching, reactive oxygen species production, mitochondrial dynamics, mitophagy, mitochondria-mediated apoptosis, and the interaction between mitochondria and the ER all have roles in neurogenesis. Lysosomes and endosomes can regulate neurite growth and extension. Moreover, metabolic reprogramming represents a novel strategy for generating functional neurons. Accordingly, the exploration and application of mechanisms underlying metabolic reprogramming will be beneficial for neural conversion and regenerative medicine. There is adequate evidence implicating the dysfunction of cellular organelles—especially mitochondria—in neurodegenerative disorders, and that improvement of mitochondrial function may reverse the progression of these diseases through the reinforcement of adult neurogenesis. Therefore, these organelles have potential as therapeutic targets for the treatment of neurodegenerative diseases. In this review, we discuss the function of these organelles, especially mitochondria, in neural development, focusing on their potential as therapeutic targets in neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hui Li,
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Hong Qing,
| |
Collapse
|
9
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
10
|
Oikonomou KD, Donzis EJ, Bui MTN, Cepeda C, Levine MS. Calcium dysregulation and compensation in cortical pyramidal neurons of the R6/2 mouse model of Huntington's disease. J Neurophysiol 2021; 126:1159-1171. [PMID: 34469694 DOI: 10.1152/jn.00181.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a fatal, hereditary neurodegenerative disorder that predominantly affects striatal medium-sized spiny neurons and cortical pyramidal neurons (CPNs). It has been proposed that perturbations in Ca2+ homeostasis could play a role in CPN alterations. To test this hypothesis, we used the R6/2 mouse model of juvenile HD at different stages of disease progression; presymptomatic, early symptomatic, and late symptomatic. We combined whole-cell patch-clamp recordings of layer 2/3 CPNs with two-photon laser scanning microscopy to image somatic and dendritic Ca2+ transients associated with evoked action potentials (APs). We found that the amplitude of AP-induced Ca2+ transients recorded at the somata of CPNs was significantly reduced in presymptomatic and late symptomatic R6/2 mice compared with wild-type (WT) littermates. However, reduced amplitudes were compensated by increases in decay times, so that Ca2+ transient areas were similar between genotypes. AP-induced Ca2+ transients in CPN proximal dendrites were variable and differences did not reach statistical significance, except for reduced areas in the late symptomatic group. In late symptomatic mice, a specific store-operated Ca2+ channel antagonist, EVP4593, reduced somatic Ca2+ transient amplitude similarly in WT and R6/2 CPNs. In contrast, dantrolene, a ryanodine receptor (RyR) antagonist, and nifedipine, an L-type Ca2+ channel blocker, significantly reduced both somatic Ca2+ transient amplitude and area in R6/2 but not WT CPNs. These findings demonstrate that perturbations of Ca2+ homeostasis and compensation occur in CPNs before and after the onset of overt symptoms, and suggest RyRs and L-type Ca2+ channels as potential targets for therapeutic intervention.NEW & NOTEWORTHY We used two-photon microscopy to examine calcium influx induced by action potentials in cortical pyramidal neurons from a mouse model of Huntington's disease (HD), the R6/2. The amplitude of somatic calcium transients was reduced in R6/2 mice compared with controls. This reduction was compensated by increased decay times, which could lead to reduced calcium buffering capacity. L-type calcium channel and ryanodine receptor blockers reduced calcium transient area in HD neurons, suggesting new therapeutic avenues.
Collapse
Affiliation(s)
- Katerina D Oikonomou
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Elissa J Donzis
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Minh T N Bui
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Carlos Cepeda
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Michael S Levine
- IDDRC, Semel Institute for Neuroscience and Human Behavior, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| |
Collapse
|
11
|
Kraskovskaya NA, Bezprozvanny IB. Normalization of Calcium Balance in Striatal Neurons in Huntington's Disease: Sigma 1 Receptor as a Potential Target for Therapy. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:471-479. [PMID: 33941067 DOI: 10.1134/s0006297921040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative, dominantly inherited genetic disease caused by expansion of the polyglutamine tract in the huntingtin gene. At the cellular level, HD is characterized by the accumulation of mutant huntingtin protein in brain cells, resulting in the development of the HD phenotype, which includes mental disorders, decreased cognitive abilities, and progressive motor impairments in the form of chorea. Despite numerous studies, no unambigous connection between the accumulation of mutant protein and selective death of striatal neurons has yet been established. Recent studies have shown impairments in the calcium homeostasis in striatal neurons in HD. These cells are extremely sensitive to changes in the cytoplasmic concentration of calcium and its excessive increase leads to their death. One of the possible ways to normalize the balance of calcium in striatal neurons is through the sigma 1 receptor (S1R), which act as a calcium sensor that also exhibits modulating chaperone activity upon the cell stress observed during the development of many neurodegenerative diseases. The fact that S1R is a ligand-operated protein makes it a new promising molecular target for the development of drug therapy of HD based on the agonists of this receptor.
Collapse
Affiliation(s)
- Nina A Kraskovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia.
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195251, Russia.
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Serwach K, Gruszczynska-Biegala J. STIM Proteins and Glutamate Receptors in Neurons: Role in Neuronal Physiology and Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20092289. [PMID: 31075835 PMCID: PMC6539036 DOI: 10.3390/ijms20092289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Neuronal calcium (Ca2+) influx has long been ascribed mainly to voltage-gated Ca2+ channels and glutamate receptor channels. Recent research has shown that it is also complemented by stromal interaction molecule (STIM) protein-mediated store-operated Ca2+ entry (SOCE). SOCE is described as Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The present review summarizes recent studies that indicate a relationship between neuronal SOCE that is mediated by STIM1 and STIM2 proteins and glutamate receptors under both physiological and pathological conditions, such as neurodegenerative disorders. We present evidence that the dysregulation of neuronal SOCE and glutamate receptor activity are hallmarks of acute neurodegenerative diseases (e.g., traumatic brain injury and cerebral ischemia) and chronic neurodegenerative diseases (e.g., Alzheimer's disease and Huntington's disease). Emerging evidence indicates a role for STIM proteins and glutamate receptors in neuronal physiology and pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Joanna Gruszczynska-Biegala
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| |
Collapse
|
15
|
Calcium Deregulation and Mitochondrial Bioenergetics in GDAP1-Related CMT Disease. Int J Mol Sci 2019; 20:ijms20020403. [PMID: 30669311 PMCID: PMC6359725 DOI: 10.3390/ijms20020403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/17/2022] Open
Abstract
The pathology of Charcot-Marie-Tooth (CMT), a disease arising from mutations in different genes, has been associated with an impairment of mitochondrial dynamics and axonal biology of mitochondria. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause several forms of CMT neuropathy, but the pathogenic mechanisms involved remain unclear. GDAP1 is an outer mitochondrial membrane protein highly expressed in neurons. It has been proposed to play a role in different aspects of mitochondrial physiology, including mitochondrial dynamics, oxidative stress processes, and mitochondrial transport along the axons. Disruption of the mitochondrial network in a neuroblastoma model of GDAP1-related CMT has been shown to decrease Ca2+ entry through the store-operated calcium entry (SOCE), which caused a failure in stimulation of mitochondrial respiration. In this review, we summarize the different functions proposed for GDAP1 and focus on the consequences for Ca2+ homeostasis and mitochondrial energy production linked to CMT disease caused by different GDAP1 mutations.
Collapse
|
16
|
Czeredys M, Vigont VA, Boeva VA, Mikoshiba K, Kaznacheyeva EV, Kuznicki J. Huntingtin-Associated Protein 1A Regulates Store-Operated Calcium Entry in Medium Spiny Neurons From Transgenic YAC128 Mice, a Model of Huntington's Disease. Front Cell Neurosci 2018; 12:381. [PMID: 30455632 PMCID: PMC6231533 DOI: 10.3389/fncel.2018.00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disease that is caused by polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular activities that is dysregulated in HD is store-operated calcium entry (SOCE), a process by which Ca2+ release from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. HTT-associated protein-1 (HAP1) is a binding partner of HTT. The aim of the present study was to examine the role of HAP1A protein in regulating SOCE in YAC128 mice, a transgenic model of HD. After Ca2+ depletion from the ER by the activation of inositol-(1,4,5)triphosphate receptor type 1 (IP3R1), we detected an increase in the activity of SOC channels when HAP1 protein isoform HAP1A was overexpressed in medium spiny neurons (MSNs) from YAC128 mice. A decrease in the activity of SOC channels in YAC128 MSNs was observed when HAP1 protein was silenced. In YAC128 MSNs that overexpressed HAP1A, an increase in activity of IP3R1 was detected while the ionomycin-sensitive ER Ca2+ pool decreased. 6-Bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride (C20H22BrClN2), identified in our previous studies as a SOCE inhibitor, restored the elevation of SOCE in YAC128 MSN cultures that overexpressed HAP1A. The IP3 sponge also restored the elevation of SOCE and increased the release of Ca2+ from the ER in YAC128 MSN cultures that overexpressed HAP1A. The overexpression of HAP1A in the human neuroblastoma cell line SK-N-SH (i.e., a cellular model of HD (SK-N-SH HTT138Q)) led to the appearance of a pool of constitutively active SOC channels and an increase in the expression of STIM2 protein. Our results showed that HAP1A causes the activation of SOC channels in HD models by affecting IP3R1 activity.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| | - Vladimir A. Vigont
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Vasilisa A. Boeva
- Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), Saitama, Japan
| | | | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
17
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
18
|
Vigont V, Nekrasov E, Shalygin A, Gusev K, Klushnikov S, Illarioshkin S, Lagarkova M, Kiselev SL, Kaznacheyeva E. Patient-Specific iPSC-Based Models of Huntington's Disease as a Tool to Study Store-Operated Calcium Entry Drug Targeting. Front Pharmacol 2018; 9:696. [PMID: 30008670 PMCID: PMC6033963 DOI: 10.3389/fphar.2018.00696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative pathologies are among the most serious and socially significant problems of modern medicine, along with cardiovascular and oncological diseases. Several attempts have been made to prevent neuronal death using novel drugs targeted to the cell calcium signaling machinery, but the lack of adequate models for screening markedly impairs the development of relevant drugs. A potential breakthrough in this field is offered by the models of hereditary neurodegenerative pathologies based on endogenous expression of mutant proteins in neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs). Here, we study specific features of store-operated calcium entry (SOCE) using an iPSCs-based model of Huntington's disease (HD) and analyze the pharmacological effects of a specific drug targeted to the calcium channels. We show that SOCE in gamma aminobutyric acid-ergic striatal medium spiny neurons (GABA MSNs) was mediated by currents through at least two different channel groups, ICRAC and ISOC. Both of these groups were upregulated in HD neurons compared with the wild-type neurons. Thapsigargin-induced intracellular calcium store depletion in GABA MSNs resulted in predominant activation of either ICRAC or ISOC. The potential anti-HD drug EVP4593, which was previously shown to have neuroprotective activity in different HD models, affected both ICRAC and ISOC.
Collapse
Affiliation(s)
- Vladimir Vigont
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Evgeny Nekrasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Shalygin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Konstantin Gusev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sergey Klushnikov
- Scientific Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Sergey Illarioshkin
- Scientific Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Maria Lagarkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey L. Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
19
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| |
Collapse
|
20
|
Mackay JP, Nassrallah WB, Raymond LA. Cause or compensation?-Altered neuronal Ca 2+ handling in Huntington's disease. CNS Neurosci Ther 2018; 24:301-310. [PMID: 29427371 DOI: 10.1111/cns.12817] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder of typically middle-aged onset for which there is no disease-modifying treatment. Caudate and putamen medium-sized spiny projection neurons (SPNs) most severely degenerate in HD. However, it is unclear why mutant huntingtin protein (mHTT) is preferentially toxic to these neurons or why symptoms manifest only relatively late in life. mHTT interacts with numerous neuronal proteins. Likewise, multiple SPN cellular processes have been described as altered in various HD models. Among these, altered neuronal Ca2+ influx and intracellular Ca2+ handling feature prominently and are addressed here. Specifically, we focus on extrasynaptic NMDA-type glutamate receptors, endoplasmic reticulum IP3 receptors, and mitochondria. As mHTT is expressed throughout development, compensatory processes will likely be mounted to mitigate any deleterious effects. Although some compensations can lessen mHTT's disruptive effects, others-such as upregulation of the ER-refilling store-operated Ca2+ channel response-contribute to pathogenesis. A causation-based approach is therefore necessary to decipher the complex sequence of events linking mHTT to neurodegeneration, and to design rational therapeutic interventions. With this in mind, we highlight evidence, or lack thereof, that the above alterations in Ca2+ handling occur early in the disease process, clearly interact with mHTT, and show disease-modifying potential when reversed in animals.
Collapse
Affiliation(s)
- James P Mackay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wissam B Nassrallah
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Neuroscience and MD/PhD Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Yu S, Chen H, Xu X, Yuan W, Zhang X. Enatioselective Synthesis of Tetrahydrocarbazoles via
Chiral Phosphoric Acid Promoted Domino Friedel-Crafts-type Reaction of Indole-3-butanal with Indoles. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shuowen Yu
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Hui Chen
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaoying Xu
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
| | - Weicheng Yuan
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
| | - Xiaomei Zhang
- Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences; Chengdu 610041 China
| |
Collapse
|
22
|
Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S, Essa MM, Guillemin GJ, Kandasamy M. Protective Effect of Antioxidants on Neuronal Dysfunction and Plasticity in Huntington's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3279061. [PMID: 28168008 PMCID: PMC5266860 DOI: 10.1155/2017/3279061] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
Huntington's disease (HD) is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult neurogenesis in HD.
Collapse
Affiliation(s)
- Thirunavukkarasu Velusamy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- DBT Ramalingaswami Re-Entry Fellowship Programme, Department of Biotechnology (DBT), New Delhi, India
| | - Archana S. Panneerselvam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- UGC-Faculty Recharge Program (UGC-FRP), University Grant Commission, New Delhi, India
| |
Collapse
|