1
|
Crul T, Csoboz B, Gombos I, Marton A, Peter M, Balogh G, Vizler C, Szente L, Vigh L. Modulation of Plasma Membrane Composition and Microdomain Organization Impairs Heat Shock Protein Expression in B16-F10 Mouse Melanoma Cells. Cells 2020; 9:cells9040951. [PMID: 32290618 PMCID: PMC7226980 DOI: 10.3390/cells9040951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022] Open
Abstract
The heat shock response (HSR) regulates induction of stress/heat shock proteins (HSPs) to preserve proteostasis during cellular stress. Earlier, our group established that the plasma membrane (PM) acts as a sensor and regulator of HSR through changes in its microdomain organization. PM microdomains such as lipid rafts, dynamic nanoscale assemblies enriched in cholesterol and sphingomyelin, and caveolae, cholesterol-rich PM invaginations, constitute clustering platforms for proteins functional in signaling cascades. Here, we aimed to compare the effect of cyclodextrin (MβCD)- and nystatin-induced cholesterol modulations on stress-activated expression of the representative HSPs, HSP70, and HSP25 in mouse B16-F10 melanoma cells. Depletion of cholesterol levels with MβCD impaired the heat-inducibility of both HSP70 and HSP25. Sequestration of cholesterol with nystatin impaired the heat-inducibility of HSP25 but not of HSP70. Imaging fluorescent correlation spectroscopy marked a modulated lateral diffusion constant of fluorescently labelled cholesterol in PM during cholesterol deprived conditions. Lipidomics analysis upon MβCD treatment revealed, next to cholesterol reductions, decreased lysophosphatidylcholine and phosphatidic acid levels. These data not only highlight the involvement of PM integrity in HSR but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism to fine tune HSP expression.
Collapse
Affiliation(s)
- Tim Crul
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
- Correspondence: ; Tel.: +36-62-599-652
| | - Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
- Institute of Medial Biology, University of Tromsø, Tromsø 9037, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Annamaria Marton
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin R&D Laboratory Ltd., 1097 Budapest, Hungary
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| |
Collapse
|
2
|
Zamanian Z, Yousefinejad S, Khoshnoud MJ, Golbabaie F, Farhang Dehghan S, Modaresi A, Amanat S, Reza Zare M, Rahmani A. Toxic effects of subacute inhalation exposure to trichloroethylene on serum lipid profile, glucose and biochemical parameters in Sprague-Dawley rats. Inhal Toxicol 2018; 30:354-360. [PMID: 30479189 DOI: 10.1080/08958378.2018.1526233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The current study evaluated the inhalation toxicity of trichloroethylene (TCE) at 0, 10, 100, 250 and 400 ppm in Sprague-Dawley rats for 10 day period, because the subacute inhalation toxicity of TCE on serum lipid profile, glucose and some biochemical parameters has not been previously reported. TCE vapors were generated using the dynamic generation system based on evaporation method in the exposure chamber. On the basis of the results, mean serum low-density lipoprotein (LDL) and albumin (ALB) decreased significantly in all the groups exposed to TCE compared with the control group (p < .005), but there was a significant increase for parameters: fasting blood glucose (FBG) and alkaline phosphatase (ALP) (p < .005). Rats exposed to 400 ppm TCE showed a significant decrease in serum cholesterol (CHOL) and protein (Pr) compared with the control group (p < .005). A negative relationship was found between triglycerides (TG), very low density lipoprotein (VLDL), CHOL, LDL, Pr, ALB and urea levels and the subacute exposure to concentrations of TCE (R2 = -0.26, p < .05), but there was a direct correlation for parameters FBG, ALP and alanine aminotransferase (ALT) (R2 = 0.42, p < .05). In conclusion, studies with Sprague-Dawley rats demonstrated that subacute inhalation exposure to TCE (≥ 100 PPM) is associated with biochemical and lipotoxicity in the form of decreased serum ALB and LDL and raised ALP and glucose levels. The present study also provides additional evidence relating to decreased serum CHOL and Pr after subacute inhalation exposure to 400 ppm TCE.
Collapse
Affiliation(s)
- Zahra Zamanian
- a Department of Occupational Health Engineering, School of Health , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Saeed Yousefinejad
- a Department of Occupational Health Engineering, School of Health , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Javad Khoshnoud
- b Department of Pharmacology Toxicology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Farideh Golbabaie
- c Department of Occupational Health, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Somayeh Farhang Dehghan
- d Department of Occupational Health, School of Public Health and Safety , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Aboutaleb Modaresi
- e Modaresi Laboratory , Larestan University of Medical Sciences, Larestan , Iran
| | - Sasan Amanat
- f Department of Nutrition, School of Public Health , Larestan University of Medical Sciences , Larestan , Iran
| | - Mohammad Reza Zare
- g Department of Environmental Health Engineering, School of Health , Larestan University of Medical Sciences , Larestan , Iran
| | - Abdolrasoul Rahmani
- a Department of Occupational Health Engineering, School of Health , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|