1
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
2
|
Huau G, Liaubet L, Gourdine JL, Riquet J, Renaudeau D. Multi-tissue metabolic and transcriptomic responses to a short-term heat stress in swine. BMC Genomics 2024; 25:99. [PMID: 38262957 PMCID: PMC10804606 DOI: 10.1186/s12864-024-09999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Heat stress (HS) is an increasing threat for pig production with a wide range of impacts. When submitted to high temperatures, pigs will use a variety of strategies to alleviate the effect of HS. While systemic adaptations are well known, tissue-specific changes remain poorly understood. In this study, thirty-two pigs were submitted to a 5-day HS at 32 °C. RESULTS Transcriptomic and metabolomic analyses were performed on several tissues. The results revealed differentially expressed genes and metabolites in different tissues. Specifically, 481, 1774, 71, 1572, 17, 164, and 169 genes were differentially expressed in muscle, adipose tissue, liver, blood, thyroid, pituitary, and adrenal glands, respectively. Regulatory glands (pituitary, thyroid, and adrenal) had a lower number of regulated genes, perhaps indicating an earlier sensitivity to HS. In addition, 7, 8, 2, and 8 metabolites were differentially produced in muscle, liver, plasma, and urine, respectively. The study also focused on the oxidative stress pathway in muscle and liver by performing a correlation analysis between genes and metabolites. CONCLUSIONS This study has identified various adaptation mechanisms in swine that enable them to cope with heat stress (HS). These mechanisms include a global decrease in energetic metabolism, as well as changes in metabolic precursors that are linked with protein and lipid catabolism and anabolism. Notably, the adaptation mechanisms differ significantly between regulatory (pituitary, thyroid and adrenal glands) and effector tissues (muscle, adipose tissue, liver and blood). Our findings provide new insights into the comprehension of HS adaptation mechanisms in swine.
Collapse
Affiliation(s)
- Guilhem Huau
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | | | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31326, Castanet Tolosan, France
| | | |
Collapse
|
3
|
Daverio Z, Kolkman M, Perrier J, Brunet L, Bendridi N, Sanglar C, Berger MA, Panthu B, Rautureau GJP. Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems. Sci Rep 2023; 13:17733. [PMID: 37853114 PMCID: PMC10584866 DOI: 10.1038/s41598-023-44783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Lactate accumulation and acidification in tumours are a cancer hallmark associated with the Warburg effect. Lactic acidosis correlates with cancer malignancy, and the benefit it offers to tumours has been the subject of numerous hypotheses. Strikingly, lactic acidosis enhances cancer cell survival to environmental glucose depletion by repressing high-rate glycolysis and lactic fermentation, and promoting an oxidative metabolism involving reactivated respiration. We used real-time NMR to evaluate how cytosolic lactate accumulation up to 40 mM and acidification up to pH 6.5 individually impact glucose consumption, lactate production and pyruvate evolution in isolated cytosols. We used a reductive cell-free system (CFS) to specifically study cytosolic metabolism independently of other Warburg-regulatory mechanisms found in the cell. We assessed the impact of lactate and acidification on the Warburg metabolism of cancer cytosols, and whether this effect extended to different cytosolic phenotypes of lactic fermentation and cancer. We observed that moderate acidification, independently of lactate concentration, drastically reduces the glucose consumption rate and halts lactate production in different lactic fermentation phenotypes. In parallel, for Warburg-type CFS lactate supplementation induces pyruvate accumulation at control pH, and can maintain a higher cytosolic pyruvate pool at low pH. Altogether, we demonstrate that intracellular acidification accounts for the direct repression of lactic fermentation by the Warburg-associated lactic acidosis.
Collapse
Affiliation(s)
- Zoé Daverio
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
- Master de Biologie, École Normale Supérieure de Lyon, University of Lyon, Université Claude Bernard Lyon 1, 69342, Lyon Cedex 07, France
| | - Maxime Kolkman
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Claude Bernard Lyon 1, 69622, Lyon, France
| | - Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Lexane Brunet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Nadia Bendridi
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Corinne Sanglar
- Institut des Sciences Analytiques, UMR5280 CNRS, University of Lyon, Université Claude Bernard Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310, Pierre-Bénite, France.
| | - Gilles J P Rautureau
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, University of Lyon, Université Claude Bernard Lyon 1, 69622, Lyon, France.
| |
Collapse
|
4
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
5
|
Conversion of Hyperpolarized [1- 13C]Pyruvate in Breast Cancer Cells Depends on Their Malignancy, Metabolic Program and Nutrient Microenvironment. Cancers (Basel) 2022; 14:cancers14071845. [PMID: 35406616 PMCID: PMC8997828 DOI: 10.3390/cancers14071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (MRS) is a technology for characterizing tumors in vivo based on their metabolic activities. The conversion rates (kpl) of hyperpolarized [1-13C]pyruvate to [1-13C]lactate depend on monocarboxylate transporters (MCT) and lactate dehydrogenase (LDH); these are also indicators of tumor malignancy. An unresolved issue is how glucose and glutamine availability in the tumor microenvironment affects metabolic characteristics of the cancer and how this relates to kpl-values. Two breast cancer cells of different malignancy (MCF-7, MDA-MB-231) were cultured in media containing defined combinations of low glucose (1 mM; 2.5 mM) and glutamine (0.1 mM; 1 mM) and analyzed for pyruvate uptake, intracellular metabolite levels, LDH and pyruvate kinase activities, and 13C6-glucose-derived metabolomics. The results show variability of kpl with the different glucose/glutamine conditions, congruent with glycolytic activity, but not with LDH activity or the Warburg effect; this suggests metabolic compartmentation. Remarkably, kpl-values were almost two-fold higher in MCF-7 than in the more malignant MDA-MB-231 cells, the latter showing a higher flux of 13C-glucose-derived pyruvate to the TCA-cycle metabolites 13C2-citrate and 13C3-malate, i.e., pyruvate decarboxylation and carboxylation, respectively. Thus, MRS with hyperpolarized [1-13C-pyruvate] is sensitive to both the metabolic program and the nutritional state of cancer cells.
Collapse
|
6
|
Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-actin. Part II: mixed isoforms. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Eprintsev AT, Komarova NR, Falaleeva MI, Beloglazova AA. Isolation and Cleaning of Lactate Dehydrogenase from Pea (Pisum sativum L.) Roots by Hypoxia and the Study of Its Regulatory Properties. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s000368381905003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Goto T, Ubukawa K, Kobayashi I, Sugawara K, Asanuma K, Sasaki Y, Guo YM, Takahashi N, Sawada K, Wakui H, Nunomura W. ATP produced by anaerobic glycolysis is essential for enucleation of human erythroblasts. Exp Hematol 2019; 72:14-26.e1. [PMID: 30797950 DOI: 10.1016/j.exphem.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
More than 2million human erythroblasts extrude their nuclei every second in bone marrow under hypoxic conditions (<7% O2). Enucleation requires specific signal transduction pathways and the local assembly of contractile actomyosin rings. However, the energy source driving these events has not yet been identified. We examined whether different O2 environments (hypoxic [5% O2] and normoxic [21% O2] conditions) affected human CD34+ cell erythroblast differentiation. We also investigated the regulatory mechanisms underlying energy production in erythroblasts during terminal differentiation under 5% or 21% O2 conditions. The results obtained revealed that the enucleation ratio and intracellular levels of adenosine triphosphate (ATP), lactate dehydrogenase (LDH) M3H, and hypoxia-inducible factor 1α in erythroblasts during terminal differentiation were higher under the 5% O2 condition than under the 21% O2 condition. We also found that the enzymatic inhibition of glyceraldehyde 3-phosphate dehydrogenase and LDH, key enzymes in anaerobic glycolysis, blocked the proliferation of colony-forming units-erythroid and enucleation of erythroblasts, and also reduced ATP levels in erythroblasts under both hypoxic and normoxic conditions. Under both conditions, phosphorylation of the Ser232, Ser293, and Ser300 residues in pyruvate dehydrogenase (inactive state of the enzyme) in erythroblasts was involved in regulating the pathway governing energy metabolism during erythroid terminal differentiation. This reaction may be mediated by pyruvate dehydrogenase kinase (PDK) 4, the major PDK isozyme expressed in erythroblasts undergoing enucleation. Collectively, these results suggest that ATP produced by anaerobic glycolysis is the main source of energy for human erythroblast enucleation in the hypoxic bone marrow environment.
Collapse
Affiliation(s)
- Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kotomi Sugawara
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University, Akita, Japan
| | - Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan.
| | - Wataru Nunomura
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan; Research Center for Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| |
Collapse
|
9
|
Paventi G, Pizzuto R, Passarella S. The occurrence of l-lactate dehydrogenase in the inner mitochondrial compartment of pig liver. Biochem Biophys Res Commun 2017; 489:255-261. [PMID: 28564593 DOI: 10.1016/j.bbrc.2017.05.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
Although pig represents a model species in biomedical research including studies dealing with liver patho-physiology, some aspects of liver metabolism need to be addressed. In particular, whether and how pig mitochondria can metabolize l-lactate remains to be established. We show here that pig liver mitochondria (PLM) possess their own l-lactate dehydrogenase (mL-LDH). This was shown both via immunological analysis and by assaying photometrically the L-LDH reaction in solubilised PLM. The mL-LDH reaction shows hyperbolic dependence on the substrate concentration, it is inhibited by oxamate and proves to differ from the cytosolic activity (cL-LDH), as revealed by the difference found in both pH profiles and temperature dependence of m- and cL-LDH. Titration experiments with digitonin show that mL-LDH is restricted in mitochondrial inner compartment. In agreement with the above findings, three genes in Sus scrofa genome encoded for L-LDH subunits which are predicted to have mitochondrial localization, as investigated by Target P 1.1 and PredSL analysis.
Collapse
Affiliation(s)
- Gianluca Paventi
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via De Sanctis, 86100 Campobasso, Italy.
| | - Roberto Pizzuto
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via De Sanctis, 86100 Campobasso, Italy
| | - Salvatore Passarella
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, via De Sanctis, 86100 Campobasso, Italy; School of Medicine and Surgery, University of Bari, Hospital Policlinico, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|