1
|
Daems C, Baz ES, D'Hooge R, Callaerts-Végh Z, Callaerts P. Gene expression differences in the olfactory bulb associated with differential social interactions and olfactory deficits in Pax6 heterozygous mice. Biol Open 2025; 14:BIO061647. [PMID: 39902612 PMCID: PMC11832127 DOI: 10.1242/bio.061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025] Open
Abstract
Mutations in the highly conserved Pax6 transcription factor have been implicated in neurodevelopmental disorders and behavioral abnormalities, yet the mechanistic basis of the latter remain poorly understood. Our study, using behavioral phenotyping, has identified aberrant social interactions, characterized by withdrawal behavior, and olfactory deficits in Pax6 heterozygous mutant mice. The molecular mechanisms underlying the observed phenotypes were characterized by means of RNA-sequencing on isolated olfactory bulbs followed by validation with qRT-PCR. Comparative analysis of olfactory bulb transcriptomes further reveals an imbalance between neuronal excitation and inhibition, synaptic dysfunction, and alterations in epigenetic regulation as possible mechanisms underlying the abnormal social behavior. We observe a considerable overlap with autism-associated genes and suggest that studying Pax6-dependent gene regulatory networks may further our insight into molecular mechanisms implicated in autistic-like behaviors in Pax6 mutations, thereby paving the way for future research in this area.
Collapse
Affiliation(s)
- Carmen Daems
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - El-Sayed Baz
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Zoology Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Mouse behavior core facility mINT, KU Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023; 60:2330-2354. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China. .,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
3
|
Desmettre T, Gatinel D, Leveziel N. Épigénétique et myopie : mécanismes et perspectives thérapeutiques. J Fr Ophtalmol 2022; 45:1209-1216. [DOI: 10.1016/j.jfo.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
4
|
Wang C, Wang K, Li SF, Song SJ, Du Y, Niu RW, Qian XW, Peng XQ, Chen FH. 4-Amino-2-trifluoromethyl-phenyl retinate induced differentiation of human myelodysplastic syndromes SKM-1 cell lines by up-regulating DDX23. Biomed Pharmacother 2020; 123:109736. [DOI: 10.1016/j.biopha.2019.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/13/2023] Open
|
5
|
Nashine S, Nesburn AB, Kuppermann BD, Kenney MC. Age-related macular degeneration (AMD) mitochondria modulate epigenetic mechanisms in retinal pigment epithelial cells. Exp Eye Res 2019; 189:107701. [PMID: 31226340 DOI: 10.1016/j.exer.2019.107701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial damage and epigenetic modifications have been implicated in the pathogenesis of Age-related Macular Degeneration (AMD). This study was designed to investigate the effects of AMD/normal mitochondria on epigenetic regulation in human transmitochondrial retinal pigment epithelial (RPE) cells in vitro. Human RPE cybrid cell lines were created by fusing mitochondria-deficient (Rho0) ARPE-19 cells with platelets obtained from either AMD patients (AMD cybrids) or normal subjects (normal cybrids). Therefore, all cybrids had identical nuclei (derived from ARPE-19 cells) but mitochondria derived from either AMD patients or age-matched normal subjects. AMD cybrids demonstrated increased RNA/protein levels for five methylation-related and four acetylation-related genes, along with lower levels of two methylation and three acetylation genes compared to normal cybrids. Demethylation using 5-Aza-2'-deoxycytidine (DAC) led to decreased expression of VEGF-A gene in AMD cells. Trichostatin A (TSA), an HDAC inhibitor, also influenced protein levels of VEGF-A, HIF1α, NFκB, and CFH in AMD cells. Our findings suggest that retrograde signaling leads to mitochondria-nucleus interactions that influence the epigenetic status of the RPE cells and this may help in the identification of future potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - Anthony B Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Mao G, Jin H, Wu L. DDX23-Linc00630-HDAC1 axis activates the Notch pathway to promote metastasis. Oncotarget 2018; 8:38937-38949. [PMID: 28473661 PMCID: PMC5503584 DOI: 10.18632/oncotarget.17156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/03/2017] [Indexed: 11/25/2022] Open
Abstract
Emerging studies demonstrated the roles of long non-coding RNAs (LncRNAs) are being implicated in the progression of many cancers. Here we report the discovery of a critical role for the linc00630 in the development of Non-Small-Cell Lung Cancers (NSCLCs). Screening from the microarray of six paired NSCLCs and adjacent non-tumor tissues, linc00630 showed a significantly higher RNA levels in NSCLCs. With the higher level confirmed in a separate cohort 90 NSCLCs patients, overexpressed of linc00630 also positive associated with tumor size, TNM tumor stage, lymph node status positive and overall patient outcomes. Linc00630 overexpression increased cell proliferation and metastasis in vitro and in vivo whereas linc00630 silencing had opposite effects. By RNA pull-down and mass spectrometry we identified Histone deacetylases 1 (HDAC1) and DEAD-box helicase 23 (DDX23) as the linc00630-binding protein that associated with mechanism of linc00630. DDX23 can specific bind with the promoter of Linc00630 to up-regulate the RNA level and high level of linc00630 strength the protein stability of HDAC1 to regulate the downstream pathway. Our study demonstrates the effectiveness of Linc00630 oligonucleotide-based promotion of NSCLCs metastasis and proliferation, illuminating a new basis of DDX23-Linc00630-HDAC1 signal axis for understanding its pathogenicity, which could be further developed as a valuable therapeutic strategy.
Collapse
Affiliation(s)
- Guozhang Mao
- Department of Cardio-Thoracic Surgery, Zhoukou Center Hospital of Henan Province, Henan 466000, China
| | - Hui Jin
- Department of Cardio-Thoracic Surgery, Zhoukou Center Hospital of Henan Province, Henan 466000, China
| | - Liuguang Wu
- Department of Cardio-Thoracic Surgery, Zhoukou Center Hospital of Henan Province, Henan 466000, China
| |
Collapse
|
8
|
廖 晓, 尹 蔚, 王 芳, 邬 力, 黄 柏. [Construction of a lentiviral vector carrying short?hairpin RNA targeting PAX6 and its effect on proliferation of glioma U251 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1603-1608. [PMID: 29292252 PMCID: PMC6744028 DOI: 10.3969/j.issn.1673-4254.2017.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To construct a lentiviral vector for delivering short hairpin RNA (shRNA) targeting PAX6 and investigate its effect on the proliferation of glioma U251 cells in vitro. METHODS Two small interfering RNA sequences targeting PAX6 gene were designed based on the reported sequence of PAX6 and annealed to form a double?stranded chain, which was inserted into a lentiviral vector to construct the recombinant lentiviral vector shRNA?PAX6. The recombinant vector was infected into U251 cells, and the expression of PAX6 mRNA and protein in the cells was detected by real?time PCR and Western blotting, respectively. The changes in the proliferation of U251 cells after the infection was assessed using MTT assay. RESULTS Double enzyme digestion of the lentiviral vector pLKD?CMV?G&NR?U6?shRNA yielded an 8208?bp fragment, and colony PCR and sequencing analysis confirmed successful construction of the lentiviral vector shRNA?PAX6. Infection of the cells with shRNA?PAX6 caused a significant reduction of the expressions of PAX6 mRNA and protein (P<0.05) and resulted in obviously increased proliferation of U251 cells (P<0.05). CONCLUSION We successfully constructed the recombinant vector shRNA?PAX6 for silencing PAX6 gene. PAX6 gene silencing results in increased proliferation of U251 cells in vitro.
Collapse
Affiliation(s)
- 晓红 廖
- />中南大学湘雅医学院生理学系,湖南 长沙 410078Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - 蔚兰 尹
- />中南大学湘雅医学院生理学系,湖南 长沙 410078Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - 芳 王
- />中南大学湘雅医学院生理学系,湖南 长沙 410078Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - 力祥 邬
- />中南大学湘雅医学院生理学系,湖南 长沙 410078Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - 柏胜 黄
- />中南大学湘雅医学院生理学系,湖南 长沙 410078Department of Physiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| |
Collapse
|