1
|
Nabi Afjadi M, Aziziyan F, Farzam F, Dabirmanesh B. Biotechnological applications of amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:435-472. [PMID: 38811087 DOI: 10.1016/bs.pmbts.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregates and amyloid fibrils have special qualities and are used in a variety of biotechnological applications. They are extensively employed in bioremediation, biomaterials, and biocatalysis. Because of their capacity to encapsulate and release pharmaceuticals and their sensitivity to certain molecules, respectively, they are also used in drug delivery and biosensor applications. They have also demonstrated potential in the domains of food and bioremediation. Additionally, amyloid peptides have drawn interest in biological applications, especially in the investigation of illnesses like Parkinson's and Alzheimer's. The unique characteristics of amyloid fibrils, namely their mechanical strength and β-sheet structure, make them adaptable to a wide range of biotechnological uses. Even with their promise, one important factor to keep in mind before widely using modified amyloid materials is their potential toxicity. Thus, current research aims to overcome safety concerns while maximizing their potential.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Duran-Meza E, Araya-Secchi R, Romero-Hasler P, Soto-Bustamante EA, Castro-Fernandez V, Castillo-Caceres C, Monasterio O, Diaz-Espinoza R. Metal Ions Can Modulate the Self-Assembly and Activity of Catalytic Peptide Amyloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6094-6106. [PMID: 38470353 DOI: 10.1021/acs.langmuir.3c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Rational design of peptides has become a powerful tool to produce self-assembled nanostructures with the ability to catalyze different chemical reactions, paving the way to develop minimalistic enzyme-like nanomaterials. Catalytic amyloid-like assemblies have emerged among the most versatile and active, but they often require additional factors for activity. Elucidating how these factors influence the structure and activity is key for the design. Here, we showed that biologically relevant metal ions can guide and modulate the self-assembly of a small peptide into diverse amyloid architectures. The morphology and catalytic activity of the resulting fibrils were tuned by the specific metal ion decorating the surface, whereas X-ray structural analysis of the amyloids showed ion-dependent shape sizes. Molecular dynamics simulations showed that the metals can strongly affect the local conformational space, which can trigger major rearrangements of the fibrils. Our results demonstrate that the conformational landscape of catalytic amyloids is broad and tunable by external factors, which can be critical for future design strategies.
Collapse
Affiliation(s)
- Eva Duran-Meza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, General Amengual 014, Estación Central, Santiago 9170390, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Raul Araya-Secchi
- Computational Biophysics group, Facultad de Ingenieria, Tecnologia y Diseño, Universidad San Sebastian, Bellavista 7, Recoleta, Santiago 8420524, Chile
- Centro Basal Ciencia & Vida, Universidad San Sebastian, Santiago 8420524, Chile
| | - Patricio Romero-Hasler
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 81380494, Chile
| | - Eduardo Arturo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 81380494, Chile
| | - Victor Castro-Fernandez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Claudio Castillo-Caceres
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, General Amengual 014, Estación Central, Santiago 9170390, Chile
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, General Amengual 014, Estación Central, Santiago 9170390, Chile
| |
Collapse
|
3
|
Carrillo D, Duran-Meza E, Castillo-Caceres C, Alarcon DE, Guzman H, Diaz-Espinoza R. Catalytic amyloids for nucleotide hydrolysis. Methods Enzymol 2024; 697:269-291. [PMID: 38816126 DOI: 10.1016/bs.mie.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.
Collapse
Affiliation(s)
- Daniel Carrillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Eva Duran-Meza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile; Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Claudio Castillo-Caceres
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Diego Eduardo Alarcon
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Hardy Guzman
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
4
|
Rathee P, Moorkkannur SN, Prabhakar R. Structural studies of catalytic peptides using molecular dynamics simulations. Methods Enzymol 2024; 697:151-180. [PMID: 38816122 DOI: 10.1016/bs.mie.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Many self-assembling peptides can form amyloid like structures with different sizes and morphologies. Driven by non-covalent interactions, their aggregation can occur through distinct pathways. Additionally, they can bind metal ions to create enzyme like active sites that allow them to catalyze diverse reactions. Due to the non-crystalline nature of amyloids, it is quite challenging to elucidate their structures using experimental spectroscopic techniques. In this aspect, molecular dynamics (MD) simulations provide a useful tool to derive structures of these macromolecules in solution. They can be further validated by comparing with experimentally measured structural parameters. However, these simulations require a multi-step process starting from the selection of the initial structure to the analysis of MD trajectories. There are multiple force fields, parametrization protocols, equilibration processes, software and analysis tools available for this process. Therefore, it is complicated for non-experts to select the most relevant tools and perform these simulations effectively. In this chapter, a systematic methodology that covers all major aspects of modeling of catalytic peptides is provided in a user-friendly manner. It will be helpful for researchers in this critical area of research.
Collapse
Affiliation(s)
- Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, United States.
| |
Collapse
|
5
|
Heerde T, Bansal A, Schmidt M, Fändrich M. Cryo-EM structure of a catalytic amyloid fibril. Sci Rep 2023; 13:4070. [PMID: 36906667 PMCID: PMC10008563 DOI: 10.1038/s41598-023-30711-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Catalytic amyloid fibrils are novel types of bioinspired, functional materials that combine the chemical and mechanical robustness of amyloids with the ability to catalyze a certain chemical reaction. In this study we used cryo-electron microcopy to analyze the amyloid fibril structure and the catalytic center of amyloid fibrils that hydrolyze ester bonds. Our findings show that catalytic amyloid fibrils are polymorphic and consist of similarly structured, zipper-like building blocks that consist of mated cross-β sheets. These building blocks define the fibril core, which is decorated by a peripheral leaflet of peptide molecules. The observed structural arrangement differs from previously described catalytic amyloid fibrils and yielded a new model of the catalytic center.
Collapse
Affiliation(s)
- Thomas Heerde
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Akanksha Bansal
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
6
|
Diaz-Espinoza R. Catalytically Active Amyloids as Future Bionanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3802. [PMID: 36364578 PMCID: PMC9656882 DOI: 10.3390/nano12213802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Peptides and proteins can aggregate into highly ordered and structured conformations called amyloids. These supramolecular structures generally have convergent features, such as the formation of intermolecular beta sheets, that lead to fibrillary architectures. The resulting fibrils have unique mechanical properties that can be exploited to develop novel nanomaterials. In recent years, sequences of small peptides have been rationally designed to self-assemble into amyloids that catalyze several chemical reactions. These amyloids exhibit reactive surfaces that can mimic the active sites of enzymes. In this review, I provide a state-of-the-art summary of the development of catalytically active amyloids. I will focus especially on catalytic activities mediated by hydrolysis, which are the most studied examples to date, as well as novel types of recently reported activities that promise to expand the possible repertoires. The combination of mechanical properties with catalytic activity in an amyloid scaffold has great potential for the development of future bionanomaterials aimed at specific applications.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 3363, Chile
| |
Collapse
|
7
|
Castillo-Caceres C, Duran-Meza E, Diaz-Espinoza R. Design and Testing of Synthetic Catalytic Amyloids Based on the Active Site of Enzymes. Methods Mol Biol 2022; 2538:207-216. [PMID: 35951302 DOI: 10.1007/978-1-0716-2529-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The amyloid fold is nowadays recognized as an alternative conformation accessible to different proteins and peptides. The highly stable and ordered structural organization of amyloid fibrils can be exploited for the design of novel nanomaterials with emergent properties. Recent works have demonstrated that the functional features of the active site of enzymes can be partially recreated using this fold as a scaffold to develop catalytically active amyloids. We describe in this chapter a protocol to design functionally active amyloids that emerge from the self-assembly in vitro of synthetic peptides with sequences based on the active site of enzymes. Using this protocol, we show the development of amyloids that catalyze the metal-dependent hydrolysis of the phosphoanhydride bonds of nucleoside triphosphates.
Collapse
Affiliation(s)
- Claudio Castillo-Caceres
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eva Duran-Meza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Mondal T, Mandal B. Proteolytic functional amyloid digests pathogenic amyloid. J Mater Chem B 2022; 10:4216-4225. [DOI: 10.1039/d2tb00640e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although amyloids are a well-known pathological structure, functional amyloids are beneficial. Functional amyloids can be engineered to cultivate desired functionality that can destroy malicious amyloids. However, not much is known...
Collapse
|
9
|
Marshall LR, Korendovych IV. Catalytic amyloids: Is misfolding folding? Curr Opin Chem Biol 2021; 64:145-153. [PMID: 34425319 PMCID: PMC8585703 DOI: 10.1016/j.cbpa.2021.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Originally regarded as a disease symptom, amyloids have shown a rich diversity of functions, including biologically beneficial ones. As such, the traditional view of polypeptide aggregation into amyloid-like structures being 'misfolding' should rather be viewed as 'alternative folding.' Various amyloid folds have been recently used to create highly efficient catalysts with specific catalytic efficiencies rivaling those of enzymes. Here we summarize recent developments and applications of catalytic amyloids, derived from both de novo and bioinspired designs, and discuss how progress in the last 2 years reflects on the field as a whole.
Collapse
Affiliation(s)
- Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
10
|
Duran-Meza E, Diaz-Espinoza R. Catalytic Amyloids as Novel Synthetic Hydrolases. Int J Mol Sci 2021; 22:ijms22179166. [PMID: 34502074 PMCID: PMC8431744 DOI: 10.3390/ijms22179166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer’s and Parkinson´s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics.
Collapse
Affiliation(s)
- Eva Duran-Meza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Correspondence:
| |
Collapse
|
11
|
Baruch-Leshem A, Chevallard C, Gobeaux F, Guenoun P, Daillant J, Fontaine P, Goldmann M, Kushmaro A, Rapaport H. Catalytically active peptides affected by self-assembly and residues order. Colloids Surf B Biointerfaces 2021; 203:111751. [DOI: 10.1016/j.colsurfb.2021.111751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
|
12
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
13
|
Zozulia O, Marshall LR, Kim I, Kohn EM, Korendovych IV. Self-Assembling Catalytic Peptide Nanomaterials Capable of Highly Efficient Peroxidase Activity. Chemistry 2021; 27:5388-5392. [PMID: 33460473 PMCID: PMC8208039 DOI: 10.1002/chem.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/13/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanomaterials capable of promoting efficient catalysis. We have shown that short, seven-residue peptides bind hemin to produce functional catalytic materials which display highly efficient peroxidation activity, reaching a catalytic efficiency of 3×105 m-1 s-1 . Self-assembly is essential for catalysis as non-assembling controls show no activity. We have also observed peroxidase activity even in the absence of hemin, suggesting the potential to alter redox properties of substrates upon association with the assemblies. These results demonstrate the practical utility of self-assembled peptides in various catalytic applications and further support the evolutionary link between amyloids and modern-day enzymes.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Inhye Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Eric M. Kohn
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| |
Collapse
|
14
|
Kwiatkowski W, Bomba R, Afanasyev P, Boehringer D, Riek R, Greenwald J. Präbiotische Peptid‐Synthese und spontane Amyloid‐Bildung im Inneren eines protozellulären Kompartiments. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Witek Kwiatkowski
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Radoslaw Bomba
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Pavel Afanasyev
- Wissenschaftliches Zentrum für optische und Elektronenmikroskopie Eidgenössische Technische Hochschule, ETH-Hönggerberg Otto-Stern-Weg 3 CH-8093 Zürich Schweiz
| | - Daniel Boehringer
- Institut für Molekularbiologie und Biophysik Eidgenössische Technische Hochschule, ETH-Hönggerberg Otto-Stern-Weg 5 CH-8093 Zürich Schweiz
| | - Roland Riek
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| | - Jason Greenwald
- Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule, ETH-Hönggerberg Vladimir-Prelog-Weg 2 CH-8093 Zürich Schweiz
| |
Collapse
|
15
|
Lengyel-Zhand Z, Marshall LR, Jung M, Jayachandran M, Kim MC, Kriews A, Makhlynets OV, Fry HC, Geyer A, Korendovych IV. Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. Chembiochem 2021; 22:585-591. [PMID: 32956537 PMCID: PMC8009494 DOI: 10.1002/cbic.202000645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The self-assembly of short peptides into catalytic amyloid-like nanomaterials has proven to be a powerful tool in both understanding the evolution of early proteins and identifying new catalysts for practically useful chemical reactions. Here we demonstrate that both parallel and antiparallel arrangements of β-sheets can accommodate metal ions in catalytically productive coordination environments. Moreover, synergistic relationships, identified in catalytic amyloid mixtures, can be captured in macrocyclic and sheet-loop-sheet species, that offer faster rates of assembly and provide more complex asymmetric arrangements of functional groups, thus paving the way for future designs of amyloid-like catalytic proteins. Our findings show how initial catalytic activity in amyloid assemblies can be propagated and improved in more-complex molecules, providing another link in a complex evolutionary chain between short, potentially abiotically produced peptides and modern-day enzymes.
Collapse
Affiliation(s)
- Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Maximilian Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Megha Jayachandran
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Min-Chul Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Austin Kriews
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
16
|
Kwiatkowski W, Bomba R, Afanasyev P, Boehringer D, Riek R, Greenwald J. Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto-Cellular Compartment. Angew Chem Int Ed Engl 2021; 60:5561-5568. [PMID: 33325627 DOI: 10.1002/anie.202015352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Cellular life requires a high degree of molecular complexity and self-organization, some of which must have originated in a prebiotic context. Here, we demonstrate how both of these features can emerge in a plausibly prebiotic system. We found that chemical gradients in simple mixtures of activated amino acids and fatty acids can lead to the formation of amyloid-like peptide fibrils that are localized inside of a proto-cellular compartment. In this process, the fatty acid or lipid vesicles act both as a filter, allowing the selective passage of activated amino acids, and as a barrier, blocking the diffusion of the amyloidogenic peptides that form spontaneously inside the vesicles. This synergy between two distinct building blocks of life induces a significant increase in molecular complexity and spatial order thereby providing a route for the early molecular evolution that could give rise to a living cell.
Collapse
Affiliation(s)
- Witek Kwiatkowski
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Radoslaw Bomba
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Pavel Afanasyev
- Scientific Center for Optical and Electron Microscopy, Swiss Federal Institute of Technology, ETH-Hönggerberg, Otto-Stern-Weg 3, CH-8093, Zürich, Switzerland
| | - Daniel Boehringer
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH-Hönggerberg, Otto-Stern-Weg 5, CH-8093, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| |
Collapse
|
17
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
18
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
19
|
Marshall LR, Jayachandran M, Lengyel-Zhand Z, Rufo CM, Kriews A, Kim MC, Korendovych IV. Synergistic Interactions Are Prevalent in Catalytic Amyloids. Chembiochem 2020; 21:2611-2614. [PMID: 32329215 PMCID: PMC7605102 DOI: 10.1002/cbic.202000205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Indexed: 11/05/2022]
Abstract
Interactions between multiple functional groups are key to catalysis. Previously, we reported synergistic interactions in catalytic amyloids formed by mixtures of heptameric peptides that lead to significant improvements in esterase activity. Herein, we describe the in-depth investigation of synergistic interactions within a family of amyloid fibrils, exploring the results of functional group interactions, the effects of chirality and the use of mixed enantiomers within fibrils. Remarkably, we find that synergistic interactions (either positive or negative) are found in the vast majority of binary mixtures of catalytic amyloid-forming peptides. The productive arrangements of functionalities rapidly identified by mixing different peptides will undoubtedly lead to the development of more active catalysts for a variety of different transformations.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Megha Jayachandran
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Caroline M. Rufo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Austin Kriews
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Min-Chul Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
20
|
Functional characterization of the ATPase-like activity displayed by a catalytic amyloid. Biochim Biophys Acta Gen Subj 2020; 1865:129729. [PMID: 32916204 DOI: 10.1016/j.bbagen.2020.129729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Amyloids are highly ordered polypeptide aggregates stabilized by a beta-sheet structural core. Though classically associated to pathology, reports on novel functional roles of these proteins have increasingly emerged in the past decade. Moreover, the recent discovery that amyloids formed with rationally designed small peptides can exhibit catalytic reactivity has opened up new opportunities in both biology and biotechnology. The observed activities typically require the binding of divalent metals, giving rise to active metal-amyloid complexes. METHODS Peptide (SDIDVFI) was aggregated in vitro. The structure of the self-assembled species was analyzed using fluorescence, transmission electron microscopy, circular dichroism and computational modeling. A kinetic characterization of the emerging catalytic activity was performed. RESULTS The peptide self-assembled into canonical amyloids that exhibited catalytic activity towards hydrolysis of the phosphoanhydride bonds of adenosine triphosphate (ATP), partially mimicking an ATPase-like enzyme. Both amyloid formation and activity are shown to depend on manganese (Mn2+) binding. The activity was not restricted to ATP but also affected all other ribonucleotides (GTP, CTP and UTP). Peptides carrying a single aspartate exhibited a similar activity. CONCLUSIONS The phosphoanhydride bonds appear as the main specificity target of the Mn2+-amyloid complex. A single aspartate per peptide is sufficient to enable the hydrolytic activity. GENERAL SIGNIFICANCE Catalytic amyloids are shown for the first time to catalyze the hydrolysis of all four ribonucleotides. Our results should contribute towards understanding the biological implications of amyloid-mediated reactivity as well as in the design of future catalytic amyloids for biotechnological applications.
Collapse
|
21
|
Wang MS, Hecht MH. A Completely De Novo ATPase from Combinatorial Protein Design. J Am Chem Soc 2020; 142:15230-15234. [PMID: 32833456 DOI: 10.1021/jacs.0c02954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our understanding of biological chemistry is shaped by the observation that all life comes from other life-as Pasteur put it, omne vivum ex vivo. A key step in expanding our biochemical vocabulary is to recapitulate biogenic catalysis using non-natural sequences that did not arise from common ancestry. Here we describe an enzyme designed completely de novo that hydrolyzes ATP. This protein was designed to lack β-sheet structure and is competitively inhibited by magnesium, two traits that are unlike natural ATPases.
Collapse
Affiliation(s)
- Michael S Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
22
|
Zozulia O, Korendovych IV. Semi-Rationally Designed Short Peptides Self-Assemble and Bind Hemin to Promote Cyclopropanation. Angew Chem Int Ed Engl 2020; 59:8108-8112. [PMID: 32128962 PMCID: PMC7274867 DOI: 10.1002/anie.201916712] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/11/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanoassemblies capable of promoting efficient catalysis. We have semi-rationally designed a series of seven-residue peptides that form hemin-binding catalytic amyloids to facilitate enantioselective cyclopropanation with efficiencies that rival those of engineered hemin proteins. These results demonstrate that: 1) Catalytic amyloids can bind complex metallocofactors to promote practically important multisubstrate transformations. 2) Even essentially flat surfaces of amyloid assemblies can impart a substantial degree of enantioselectivity without the need for extensive optimization. 3) The ease of peptide preparation allows for straightforward incorporation of unnatural amino acids and the preparation of peptides made from d-amino acids with complete reversal of enantioselectivity.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
23
|
Zozulia O, Korendovych IV. Semi‐Rationally Designed Short Peptides Self‐Assemble and Bind Hemin to Promote Cyclopropanation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oleksii Zozulia
- Department of ChemistrySyracuse University 111 College Place Syracuse NY 13244 USA
| | - Ivan V. Korendovych
- Department of ChemistrySyracuse University 111 College Place Syracuse NY 13244 USA
| |
Collapse
|
24
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Singla R, Abidi SMS, Dar AI, Acharya A. Inhibition of Glycation-Induced Aggregation of Human Serum Albumin by Organic-Inorganic Hybrid Nanocomposites of Iron Oxide-Functionalized Nanocellulose. ACS OMEGA 2019; 4:14805-14819. [PMID: 31552320 PMCID: PMC6751540 DOI: 10.1021/acsomega.9b01392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.0 nm)-conjugated cellulose nanocrystals (CNCs) isolated from Syzygium cumini (SC) and Pinus roxburghii (PR) were chemically synthesized. Transmission electron microscopy (TEM) images of the nanocomposites suggested that the in situ-synthesized iron oxide NPs were bound to the CNC surface in a uniform and regular fashion. The ThT fluorescence assay together with 8-anilino-1-naphthalenesulfonic acid, Congo Red, and CD studies suggested that short fiber-based SC nanocomposites showed better inhibition as well as dissociation of human serum albumin aggregates. The TEM and fluorescence microscopy studies supported similar observations. Native polyacrylamide gel electrophoresis results documented dissociation of higher protein aggregates in the presence of the developed nanocomposite. Interestingly, the dissociated proteins retained their biological function by maintaining a high amount of α-helix content. The in vitro studies with HEK-293 cells suggested that the developed nanocomposite reduces aggregation-induced cytotoxicity by intracellular reactive oxygen species scavenging and maintaining the Ca2+ ion-channel. These results indicated that the hybrid organic-inorganic nanocomposite, with simultaneous sites for hydrophobic and hydrophilic interactions, tends to provide a larger surface area for nanocomposite-protein interactions, which ultimately disfavors the nucleation step for fibrillation for protein aggregates.
Collapse
Affiliation(s)
- Rubbel Singla
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Syed M. S. Abidi
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aqib Iqbal Dar
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amitabha Acharya
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
26
|
Emerging Paradigms for Synthetic Design of Functional Amyloids. J Mol Biol 2018; 430:3720-3734. [DOI: 10.1016/j.jmb.2018.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
|
27
|
Jaworek MW, Schuabb V, Winter R. Pressure and cosolvent modulation of the catalytic activity of amyloid fibrils. Chem Commun (Camb) 2018; 54:5696-5699. [PMID: 29691524 DOI: 10.1039/c8cc00699g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the effects of pressure and cosolvents on the catalytic activity of a designed amyloid fibril by applying a high-pressure stopped-flow methodology with rapid spectroscopic detection. FTIR spectroscopic data revealed a remarkable pressure and temperature stability of the fibrillar catalyst. The activity is further enhanced by osmolytes and macromolecular crowding.
Collapse
Affiliation(s)
- Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | |
Collapse
|
28
|
Greenwald J, Kwiatkowski W, Riek R. Peptide Amyloids in the Origin of Life. J Mol Biol 2018; 430:3735-3750. [PMID: 29890117 DOI: 10.1016/j.jmb.2018.05.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed "the amyloid-world" hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.
Collapse
Affiliation(s)
- Jason Greenwald
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Witek Kwiatkowski
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| |
Collapse
|
29
|
Abstract
Self-assembly of molecules often results in new emerging properties. Even very short peptides can self-assemble into structures with a variety of physical and structural characteristics. Remarkably, many peptide assemblies show high catalytic activity in model reactions reaching efficiencies comparable to those found in natural enzymes by weight. In this review, we discuss different strategies used to rationally develop self-assembled peptide catalysts with natural and unnatural backbones as well as with metal-containing cofactors.
Collapse
Affiliation(s)
- O Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA.
| | | | | |
Collapse
|
30
|
Maury CPJ. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cell Mol Life Sci 2018; 75:1499-1507. [PMID: 29550973 PMCID: PMC5897472 DOI: 10.1007/s00018-018-2797-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 01/29/2023]
Abstract
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.
Collapse
|
31
|
Lengyel Z, Rufo CM, Moroz YS, Makhlynets OV, Korendovych IV. Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and Tandem Reactions. ACS Catal 2018; 8:59-62. [PMID: 30319881 PMCID: PMC6181230 DOI: 10.1021/acscatal.7b03323] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Self-assembly of short de novo designed peptides gives rise to catalytic amyloids capable of facilitating multiple chemical transformations. We show that catalytic amyloids can efficiently hydrolyze paraoxon, a widely used, highly toxic organophosphate pesticide. Moreover, these robust and inexpensive metal-containing materials can be easily deposited on various surfaces producing catalytic flow devices. Finally, functional promiscuity of catalytic amyloids promotes tandem hydrolysis/oxidation reactions. High efficiency discovered in a very small library of peptides suggests an enormous potential for further improvement of catalytic properties both in terms of catalytic efficiency and substrate scope.
Collapse
Affiliation(s)
- Zsófia Lengyel
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244
| | - Caroline M. Rufo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244
| | | | - Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244
| |
Collapse
|