1
|
Isakova AA, Druzhkova IN, Mozherov AM, Mazur DV, Antipova NV, Krasnov KS, Fadeev RS, Gasparian ME, Yagolovich AV. Glioblastoma Sensitization to Therapeutic Effects by Glutamine Deprivation Depends on Cellular Phenotype and Metabolism. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1744-1758. [PMID: 39523113 DOI: 10.1134/s0006297924100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Glutamine plays an important role in tumor metabolism. It is known that the core region of solid tumors is deprived of glutamine, which affects tumor growth and spread. Here we investigated the effect of glutamine deprivation on cellular metabolism and sensitivity of human glioblastoma cells U87MG and T98G to drugs of various origin: alkylating cytostatic agent temozolomide; cytokine TRAIL DR5-B - agonist of the DR5 receptor; and GMX1778 - a targeted inhibitor of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), limiting NAD biosynthesis. Bioinformatics analysis of the cell transcriptomes showed that U87MG cells have a more differentiated phenotype than T98G, and also differ in the expression profile of the genes associated with glutamine metabolism. Upon glutamine deprivation, growth rate of the U87MG and T98G cells decreased. Analysis of cellular metabolism by FLIM microscopy of NADH as well as assessment of lactate content in the medium showed that glutamine deprivation shifted metabolic status of the U87MG cells towards glycolysis. This was accompanied by the increase in expression of the stemness marker CD133, which collectively could indicate de-differentiation of these cells. At the same time, we observed increase in both expression of the DR5 receptor and sensitivity of the U87MG cells to DR5-B. On the contrary, glutamine deprivation of T98G cells induced metabolic shift towards oxidative phosphorylation, decrease in the DR5 expression and resistance to DR5-B. The effects of NAMPT inhibition also differed between the two cell lines and were opposite to the effects of DR5-B: upon glutamine deprivation, U87MG cells acquired resistance, while T98G cells were sensitized to GMX1778. Thus, phenotypic and metabolic differences between the two human glioblastoma cell lines caused divergent metabolic changes and contrasting responses to different targeted drugs during glutamine deprivation. These data should be considered when developing treatment strategies for glioblastoma via drug-mediated deprivation of amino acids, as well as when exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina N Druzhkova
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Artem M Mozherov
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | |
Collapse
|
2
|
Mi L, Liu J, Zhang Y, Su A, Tang M, Xing Z, He T, Wei T, Li Z, Wu W. The EPRS-ATF4-COLI pathway axis is a potential target for anaplastic thyroid carcinoma therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155670. [PMID: 38704915 DOI: 10.1016/j.phymed.2024.155670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is recognized as the most aggressive and malignant form of thyroid cancer, underscoring the critical need for effective therapeutic strategies to curb its progression and improve patient prognosis. Halofuginone (HF), a derivative of febrifugine, has displayed antitumor properties across various cancer types. However, there is a paucity of published research focused on the potential of HF to enhance the clinical efficacy of treating ATC. OBJECTIVE In this study, we thoroughly investigated the antitumor effects and mechanisms of HF in ATC, aiming to discover lead compounds for treating ATC and reveal novel therapeutic targets for ATC tumors. METHODS A series of assays, including CCK8, colony formation, tumor xenograft models, and ATC tumor organoid experiments, were conducted to evaluate the anticancer properties of HF both in vitro and in vivo. Techniques such as drug affinity responsive target stability (DARTS), western blot, immunofluorescence, and immunohistochemistry were employed to pinpoint HF target proteins within ATC. Furthermore, we harnessed the GEPIA and GEO databases and performed immunohistochemistry to validate the therapeutic potential of the glutamyl-prolyl-tRNA-synthetase (EPRS)- activating transcription factor 4 (ATF4)- type I collagen (COLI) pathway axis in the context of ATC. The study also incorporated RNA sequencing analysis, confocal imaging, and flow cytometry to delve into the molecular mechanisms of HF in ATC. RESULTS HF exhibited a substantial inhibitory impact on cell proliferation in vitro and on tumor growth in vivo. The DARTS results highlighted HF's influence on EPRS within ATC cells, triggering an amino acid starvation response (AASR) by suppressing EPRS expression, consequently leading to a reduction in COLI expression in ATC cells. The introduction of proline mitigated the effect of HF on ATF4 and COLI expression, indicating that the EPRS-ATF4-COLI pathway axis was a focal target of HF in ATC. Analysis of the expression levels of the EPRS, ATF4, and COLI proteins in thyroid tumors, along with an examination of the relationship between COLI expression and thyroid tumor stage, revealed that HF significantly inhibited the growth of ATC tumor organoids, demonstrating the therapeutic potential of targeting the EPRS-ATF4-COLI pathway axis in ATC. RNA sequencing analysis revealed significant differences in the pathways associated with metastasis and apoptosis between control and HF-treated cells. Transwell assays and flow cytometry experiments provided evidence of the capacity of HF to impede cell migration and induce apoptosis in ATC cells. Furthermore, HF hindered cell metastasis by suppressing the epithelial-mesenchymal transition (EMT) pathway, acting through the inhibition of FAK-AKT-NF-κB/Wnt-β-catenin signaling and restraining angiogenesis via the VEGF pathway. HF also promoted apoptosis through the mitochondrial apoptotic pathway. CONCLUSION This study provided inaugural evidence suggesting that HF could emerge as a promising therapeutic agent for the treatment of ATC. The EPRS-ATF4-COLI pathway axis stood out as a prospective biomarker and therapeutic target for ATC.
Collapse
Affiliation(s)
- Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
3
|
Guo S, Wang X, Wang Y, Bai J, Liu Y, Shao Z. The potential therapeutic targets of glutamine metabolism in head and neck squamous cell carcinoma. Biomed Pharmacother 2024; 176:116906. [PMID: 38876051 DOI: 10.1016/j.biopha.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Targeting metabolic reprogramming may be an effective strategy to enhance cancer treatment efficacy. Glutamine serves as a vital nutrient for cancer cells. Inhibiting glutamine metabolism has shown promise in preventing tumor growth both in vivo and in vitro through various mechanisms. Therefore, this review collates recent scientific literature concerning the correlation between glutamine metabolism and cancer treatment. Novel treatment modalities based on amino acid transporters, metabolites, and glutaminase are discussed. Moreover, we demonstrate the relationship between glutamine metabolism and tumor proliferation, drug resistance, and the tumor immune microenvironment, offering new perspectives for the clinical treatment of head and neck squamous cell carcinoma, particularly for combined therapies. Identifying innovative approaches for enhancing the efficacy of glutamine-based metabolic therapy is crucial to improving HNSCC treatment.
Collapse
Affiliation(s)
- Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Liu
- Department of stomatology, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Huangshi 435000, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
4
|
Kim JH, Lee J, Im SS, Kim B, Kim EY, Min HJ, Heo J, Chang EJ, Choi KC, Shin DM, Son J. Glutamine-mediated epigenetic regulation of cFLIP underlies resistance to TRAIL in pancreatic cancer. Exp Mol Med 2024; 56:1013-1026. [PMID: 38684915 PMCID: PMC11058808 DOI: 10.1038/s12276-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.
Collapse
MESH Headings
- Humans
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- CASP8 and FADD-Like Apoptosis Regulating Protein/genetics
- TNF-Related Apoptosis-Inducing Ligand/metabolism
- Epigenesis, Genetic
- Glutamine/metabolism
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Jumonji Domain-Containing Histone Demethylases/genetics
- Drug Resistance, Neoplasm/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Apoptosis/drug effects
- Ketoglutaric Acids/metabolism
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Aspartate Aminotransferase, Cytoplasmic/metabolism
- Aspartate Aminotransferase, Cytoplasmic/genetics
- Animals
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinyoung Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Se Seul Im
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Boyun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyo-Jin Min
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jinbeom Heo
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jaekyoung Son
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
5
|
Fundamental Role of Pentose Phosphate Pathway within the Endoplasmic Reticulum in Glutamine Addiction of Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2022; 12:antiox12010043. [PMID: 36670904 PMCID: PMC9854646 DOI: 10.3390/antiox12010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer utilization of large glutamine equivalents contributes to diverging glucose-6-P flux toward the pentose phosphate shunt (PPP) to feed the building blocks and the antioxidant responses of rapidly proliferating cells. In addition to the well-acknowledged cytosolic pathway, cancer cells also run a largely independent PPP, triggered by hexose-6P-dehydrogenase within the endoplasmic reticulum (ER), whose activity is mandatory for the integrity of ER-mitochondria networking. To verify whether this reticular metabolism is dependent on glutamine levels, we complemented the metabolomic characterization of intermediates of the glucose metabolism and tricarboxylic acid cycle with the estimation of proliferating activity, energy metabolism, redox damage, and mitochondrial function in two breast cancer cell lines. ER-PPP activity and its determinants were estimated by the ER accumulation of glucose analogs. Glutamine shortage decreased the proliferation rate despite increased ATP and NADH levels. It depleted NADPH reductive power and increased malondialdehyde content despite a marked increase in glucose-6P-dehydrogenase. This paradox was explained by the deceleration of ER-PPP favored by the decrease in hexose-6P-dehydrogenase expression coupled with the opposite response of its competitor enzyme glucose-6P-phosphatase. The decreased ER-PPP activity eventually hampered mitochondrial function and calcium exchanges. These data configure the ER-PPP as a powerful, unrecognized regulator of cancer cell metabolism and proliferation.
Collapse
|
6
|
Ma G, Zhang Z, Li P, Zhang Z, Zeng M, Liang Z, Li D, Wang L, Chen Y, Liang Y, Niu H. Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment. Cell Commun Signal 2022; 20:114. [PMID: 35897036 PMCID: PMC9327201 DOI: 10.1186/s12964-022-00909-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming and immune escape play a major role in tumorigenesis. Increasing number of studies have shown that reprogramming of glutamine metabolism is a putative determinant of the anti-tumor immune response in the tumor microenvironment (TME). Usually, the predatory uptake of glutamine by tumor cells in the TME results in the limited utilization of glutamine by immune cells and affects the anti-tumor immune response. The cell-programmed glutamine partitioning also affects the anti-tumor immune response. However, the reprogramming of glutamine metabolism in tumors modulates immune escape by regulating tumor PD-L1 expression. Likewise, the reprogramming of glutamine metabolism in the immune cells also affects their immune function. Additionally, different types of glutamine metabolism inhibitors extensively regulate the immune cells in the TME while suppressing tumor cell proliferation. Herein, we discuss how metabolic reprogramming of tumor and immune cells regulates anti-tumor immune responses, as well as functional changes in different immune cells in the context of targeting tumor glutamine metabolism, which can better explain the potential of targeting glutamine metabolism in combination with immunotherapy for cancer. Video abstract.
Collapse
Affiliation(s)
- Guofeng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China.,Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhilei Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China.,Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Peng Li
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China.,Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China.,Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Manqin Zeng
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dan Li
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266003, China. .,Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
7
|
Liu H, Dai L, Wang M, Feng F, Xiao Y. Tunicamycin Induces Hepatic Stellate Cell Apoptosis Through Calpain-2/Ca 2 +-Dependent Endoplasmic Reticulum Stress Pathway. Front Cell Dev Biol 2021; 9:684857. [PMID: 34604209 PMCID: PMC8484751 DOI: 10.3389/fcell.2021.684857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
It has been reported that calpain/caspase-mediated apoptosis induced by endoplasmic reticulum stress (ERS) in hepatic stellate cells (HSCs) by previous studies. At present, the activation of HSC is an important cause of liver fibrosis, and the induction of HSC apoptosis plays an irreplaceable role in reversing liver fibrosis. Therefore, it is of great significance to explore mechanisms of action that can induce HSC apoptosis for the reversal of hepatic fibrosis and the clinical prevention and treatment of hepatic-fibrosis-related diseases such as hepatitis, cirrhosis, and liver cancer. In the current study, we demonstrated that tunicamycin (a novel ERS inducer) can induce the apoptosis of HSCs and increase the concentration of intracellular Ca2+ and the expression of ERS protein GRP78, apoptosis protein caspase-12, and Bax, while it can decrease the antiapoptosis protein expression of Bcl-2. Our findings indicate that tunicamycin can induce HSCs apoptosis through calpain-2/Ca2+-dependent ERS pathway.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Linyu Dai
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ming Wang
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fumin Feng
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yonghong Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
8
|
Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, Bronisz A, Revai Lechtich E, Sasaki H, Mora JL, Brastianos PK, Falcone JL, Hofer AM, Franco A, Shah K. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. SCIENCE ADVANCES 2021; 7:7/10/eabe8671. [PMID: 33658202 PMCID: PMC7929513 DOI: 10.1126/sciadv.abe8671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Basal-like breast cancer (BLBC) shows brain metastatic (BM) capability and overexpresses EGFR and death-receptors 4/5 (DR4/5); however, the anatomical location of BM prohibits efficient drug-delivery to these targetable markers. In this study, we developed BLBC-BM mouse models featuring different patterns of BMs and explored the versatility of estem cell (SC)-mediated bi-functional EGFR and DR4/5-targeted treatment in these models. Most BLBC lines demonstrated a high sensitivity to EGFR and DR4/5 bi-targeting therapeutic protein, EVDRL [anti-EGFR VHH (EV) fused to DR ligand (DRL)]. Functional analyses using inhibitors and CRISPR-Cas9 knockouts revealed that the EV domain facilitated in augmenting DR4/5-DRL binding and enhancing DRL-induced apoptosis. EVDRL secreting stem cells alleviated tumor-burden and significantly increased survival in mouse models of residual-tumor after macrometastasis resection, perivascular niche micrometastasis, and leptomeningeal metastasis. This study reports mechanism based simultaneous targeting of EGFR and DR4/5 in BLBC and defines a new treatment paradigm for treatment of BM.
Collapse
Affiliation(s)
- Yohei Kitamura
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nobuhiko Kanaya
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Susana Moleirinho
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wanlu Du
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nada Attia
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka Bronisz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Joana Liliana Mora
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Jefferey L Falcone
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Aldebaran M Hofer
- VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Arnaldo Franco
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Gao D, Fish EN. Chemokines in breast cancer: Regulating metabolism. Cytokine 2019; 109:57-64. [PMID: 29903574 DOI: 10.1016/j.cyto.2018.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Accumulating evidence indicates that chemokine-chemokine receptor interactions invoke biological responses beyond their originally described function of orchestrating leukocyte trafficking. In this review we will extend the findings that chemokines participate actively in the neoplastic process, and consider the contribution of CCL5 activation of CCR5 on breast cancer cells to upregulation of anabolic metabolic events that would support the energy demands of cell replication and proliferation.
Collapse
Affiliation(s)
- Darrin Gao
- Dept. Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Bldg., Toronto, Ontario M5S 1A8, Canada; Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, Ontario M5G 2M1, Canada.
| | - Eleanor N Fish
- Dept. Immunology, University of Toronto, 1 King's College Circle, Medical Sciences Bldg., Toronto, Ontario M5S 1A8, Canada; Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, Ontario M5G 2M1, Canada.
| |
Collapse
|
10
|
Gwangwa MV, Joubert AM, Visagie MH. Effects of glutamine deprivation on oxidative stress and cell survival in breast cell lines. Biol Res 2019; 52:15. [PMID: 30917872 PMCID: PMC6437944 DOI: 10.1186/s40659-019-0224-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background Tumourigenic cells modify metabolic pathways in order to facilitate increased proliferation and cell survival resulting in glucose- and glutamine addiction. Previous research indicated that glutamine deprivation resulted in potential differential activity targeting tumourigenic cells more prominently. This is ascribed to tumourigenic cells utilising increased glutamine quantities for enhanced glycolysis- and glutaminolysis. In this study, the effects exerted by glutamine deprivation on reactive oxygen species (ROS) production, mitochondrial membrane potential, cell proliferation and cell death in breast tumourigenic cell lines (MCF-7, MDA-MB-231, BT-20) and a non-tumourigenic breast cell line (MCF-10A) were investigated. Results Spectrophotometry demonstrated that glutamine deprivation resulted in decreased cell growth in a time-dependent manner. MCF-7 cell growth was decreased to 61% after 96 h of glutamine deprivation; MDA-MB-231 cell growth was decreased to 78% cell growth after 96 h of glutamine deprivation, MCF-10A cell growth was decreased 89% after 96 h of glutamine deprivation and BT-20 cell growth decreased to 86% after 24 h of glutamine deprivation and remained unchanged until 96 h of glutamine deprivation. Glutamine deprivation resulted in oxidative stress where superoxide levels were significantly elevated after 96 h in the MCF-7- and MDA-MB-231 cell lines. Time-dependent production of hydrogen peroxide was accompanied by aberrant mitochondrial membrane potential. The effects of ROS and mitochondrial membrane potential were more prominently observed in the MCF-7 cell line when compared to the MDA-MB-231-, MCF-10A- and BT-20 cell lines. Cell cycle progression revealed that glutamine deprivation resulted in a significant increase in the S-phase after 72 h of glutamine deprivation in the MCF-7 cell line. Apoptosis induction resulted in a decrease in viable cells in all cell lines following glutamine deprivation. In the MCF-7 cells, 87.61% of viable cells were present after 24 h of glutamine deprivation. Conclusion This study demonstrates that glutamine deprivation resulted in decreased cell proliferation, time-dependent- and cell line-dependent ROS generation, aberrant mitochondrial membrane potential and disrupted cell cycle progression. In addition, the estrogen receptor positive MCF-7 cell line was more prominently affected. This study contributes to knowledge regarding the sensitivity of breast cancer cells and non-tumorigenic cells to glutamine deprivation. Electronic supplementary material The online version of this article (10.1186/s40659-019-0224-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mokgadi Violet Gwangwa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa
| | - Michelle Helen Visagie
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| |
Collapse
|
11
|
Ruggiero MR, Baroni S, Aime S, Crich SG. Relaxometric investigations addressing the determination of intracellular water lifetime: a novel tumour biomarker of general applicability. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1527045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- IBB-CNR, Torino, Italy
| | | |
Collapse
|
12
|
Mauro-Lizcano M, López-Rivas A. Glutamine metabolism regulates FLIP expression and sensitivity to TRAIL in triple-negative breast cancer cells. Cell Death Dis 2018; 9:205. [PMID: 29434187 PMCID: PMC5833863 DOI: 10.1038/s41419-018-0263-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022]
Abstract
Glutamine plays an important role in the metabolism of tumor cells through its contribution to redox homeostasis, bioenergetics, synthesis of macromolecules, and signaling. Triple-negative breast cancers (TNBC) are highly metastatic and associated with poor prognosis. TNBC cells show a marked dependence on extracellular glutamine for growth. Herein we demonstrate that TNBC cells are markedly sensitized to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis upon glutamine deprivation. Upregulation of pro-apoptotic TRAIL receptor 2 (TRAIL-R2/DR5) and downregulation of FLICE-inhibitory protein (FLIP) are observed in glutamine-deprived TNBC cells. Activation of the amino-acid-sensing kinase general control nonderepressible 2 (GCN2) upon glutamine deprivation is responsible for TRAIL-R2 upregulation through a signaling pathway involving ATF4 and CHOP transcription factors. In contrast, FLIP downregulation in glutamine-deprived TNBC occurs by a GCN2-independent mechanism. Importantly, silencing FLIP expression by RNA interference results in a marked sensitization of TNBC cells to TRAIL-induced apoptosis. In addition, pharmacological or genetic inhibition of transaminases increases TRAIL-R2 expression and downregulates FLIP levels, sensitizing TNBC cells to TRAIL. Interestingly, treatment with l-asparaginase markedly sensitizes TNBC cells to TRAIL through its glutaminase activity. Overall, our findings suggest that targeting the glutamine addiction phenotype of TNBC can be regarded as a potential antitumoral target in combination with agonists of proapoptotic TRAIL receptors.
Collapse
Affiliation(s)
- Marta Mauro-Lizcano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Avda Américo Vespucio 24, Sevilla, 41092, Spain
| | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Avda Américo Vespucio 24, Sevilla, 41092, Spain. .,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
13
|
Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol Metab 2017; 28:794-806. [PMID: 28797581 PMCID: PMC5951684 DOI: 10.1016/j.tem.2017.07.003] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023]
Abstract
Activating transcription factor 4 (ATF4) is a stress-induced transcription factor that is frequently upregulated in cancer cells. ATF4 controls the expression of a wide range of adaptive genes that allow cells to endure periods of stress, such as hypoxia or amino acid limitation. However, under persistent stress conditions, ATF4 promotes the induction of apoptosis. Recent advances point to a role for post-translational modifications (PTMs) and epigenetic mechanisms in balancing these pro- and anti-survival effects of ATF4. We review here how PTMs and epigenetic modifiers associated with ATF4 may be exploited by cancer cells to cope with cellular stress conditions that are intrinsically associated with tumor growth. Identification of mechanisms that modulate ATF4-mediated transcription and its effects on cellular metabolism may uncover new targets for cancer treatment.
Collapse
Affiliation(s)
- Inge M N Wortel
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud university medical center, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud university medical center, Nijmegen, The Netherlands
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610-0245, USA.
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|