1
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Luo S, Chen Y, Zhou W, Canavese F, Li L. Pioneering a chick embryo model to explore the intrauterine etiology of developmental dysplasia of the hip in oligohydramnios conditions. Osteoarthritis Cartilage 2024; 32:869-880. [PMID: 38588889 DOI: 10.1016/j.joca.2024.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE To explore the impact of oligohydramnios on fetal movement and hip development, given its association with developmental dysplasia of the hip (DDH) but unclear mechanisms. METHODS Chick embryos were divided into four groups based on the severity of oligohydramnios induced by amniotic fluid aspiration (control, 0.2 mL, 0.4 mL, 0.6 mL). Fetal movement was assessed by detection of movement and quantification of residual amniotic fluid volume. Hip joint development was assessed by gross anatomic analysis, micro-computed tomography (micro-CT) for cartilage assessment, and histologic observation at multiple time points. In addition, a subset of embryos from the 0.4 mL aspirated group underwent saline reinfusion and subsequent evaluation. RESULTS Increasing volumes of aspirated amniotic fluid resulted in worsening of fetal movement restrictions (e.g., 0.4 mL aspirated and control group at E10: frequency difference -7.765 [95% CI: -9.125, -6.404]; amplitude difference -0.343 [95% CI: -0.588, -0.097]). The 0.4 mL aspirated group had significantly smaller hip measurements compared to controls, with reduced acetabular length (-0.418 [95% CI: -0.575, -0.261]) and width (-0.304 [95% CI: -0.491, -0.117]) at day E14.5. Histological analysis revealed a smaller femoral head (1.084 ± 0.264 cm) and shallower acetabulum (0.380 ± 0.106 cm) in the 0.4 mL group. Micro-CT showed cartilage matrix degeneration (13.6% [95% CI: 0.6%, 26.7%], P = 0.043 on E14.5). Saline reinfusion resulted in significant improvements in the femoral head to greater trochanter (0.578 [95% CI: 0.323, 0.833], P = 0.001). CONCLUSIONS Oligohydramnios can cause DDH by restricting fetal movement and disrupting hip morphogenesis in a time-dependent manner. Timely reversal of oligohydramnios during the fetal period may prevent DDH.
Collapse
Affiliation(s)
- Shaoting Luo
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China
| | - Federico Canavese
- Department of Pediatric Orthopedic Surgery, Lille University Centre, Jeanne de Flandre Hospital, 59000 Lille, France
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
3
|
Che X, Huang Y, Zhong K, Jia K, Wei Y, Meng Y, Yuan W, Lu H. Thiophanate-methyl induces notochord toxicity by activating the PI3K-mTOR pathway in zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120861. [PMID: 36563988 DOI: 10.1016/j.envpol.2022.120861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Thiophanate-methyl (TM), a typical pesticide widely used worldwide, was detected in rivers, soil, fruits, and vegetables. Thus, it is urgent to identify the potential harm of TM residual to non-target organisms and its molecular mechanisms. We used zebrafish (Danio rerio) in this study to evaluate TM toxicity. TM exposure induced developmental toxicity, including inhibited hatchability, reduced heart rates, restrained spontaneous locomotion, and decreased body length. Furthermore, we observed obvious toxicity in the notochord and detected increased expression levels of notochord-related genes (shha, col2a, and tbxta) by in situ hybridization in zebrafish larvae. In addition, calcein staining, alkaline phosphatase (ALP) activity analysis, and anatomic analysis indicated that TM induced notochord toxicity. We used rescue experiments to verify whether the PI3K-mTOR pathway involved in the notochord development was the cause of notochord abnormalities. Rapamycin and LY294002 (an inhibitor of PI3K) relieve notochord toxicity caused by TM, including morphological abnormalities. In summary, TM might induce notochord toxicity by activating the PI3K-mTOR pathway in zebrafish.
Collapse
Affiliation(s)
- Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Center for Clinical Medicine Research of Jinggangshan University, China.
| |
Collapse
|
4
|
Wu J, Yuan Z, Li J, Zhu M, Canavese F, Xun F, Li Y, Xu H. Does the size of the femoral head correlate with the incidence of avascular necrosis of the proximal femoral epiphysis in children with developmental dysplasia of the hip treated by closed reduction? J Child Orthop 2020; 14:175-183. [PMID: 32582384 PMCID: PMC7302414 DOI: 10.1302/1863-2548.14.190176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The purpose of this study was to identify if any correlation between size of the proximal femoral epiphysis and avascular necrosis (AVN) exists. METHODS We retrospectively reviewed 111 patients with developmental dysplasia of the hip treated by closed reduction (124 hips). The diameter and height of both femoral head and ossific nucleus were assessed on preoperative MRI. RESULTS The diameter and the height of the femoral head as well as of the ossific nucleus of the contralateral side were significantly greater than the dislocated side. AVN occurred in 21 (16.9%) out of 124 hips. The rate of AVN gradually decreased with age: 30.0% at six to 12 months, 18.2% at 12 to 18 months and 3.7% at 18 to 24 months. Spearman correlation analysis showed that age is negatively correlated with the incidence of AVN (r = -0.274; p = 0.002) and the diameter of the femoral head has a significantly negative association with the incidence of AVN (r = -0.287; p = 0.001). No significant association was observed between the incidence of AVN and height of the femoral head or size of the ossific nucleus. Hips with AVN were significantly smaller than hips without AVN. CONCLUSIONS The size of both the femoral head and the ossific nucleus increase with age although the dislocated femoral head is smaller compared with the contralateral side. The diameter of the femoral head and not the size of the ossific nucleus negatively correlate with the risk of AVN, with a bigger femoral head showing lower risk of AVN. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- JianPing Wu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China
| | - Zhe Yuan
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China
| | - JingChun Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China
| | - MingWei Zhu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China
| | - Federico Canavese
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China
| | - FuXing Xun
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China
| | - YiQiang Li
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China,Correspondence should be sent to HongWen Xu and YiQiang Li, Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, 9th JinSui Road, GuangZhou, 510623, China. E-mail: ,
| | - HongWen Xu
- Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, GuangZhou, China,Correspondence should be sent to HongWen Xu and YiQiang Li, Department of Pediatric Orthopaedics, GuangZhou Women and Children’s Medical Center, 9th JinSui Road, GuangZhou, 510623, China. E-mail: ,
| |
Collapse
|
5
|
Kenanidis E, Gkekas NK, Karasmani A, Anagnostis P, Christofilopoulos P, Tsiridis E. Genetic Predisposition to Developmental Dysplasia of the Hip. J Arthroplasty 2020; 35:291-300.e1. [PMID: 31522852 DOI: 10.1016/j.arth.2019.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/14/2019] [Accepted: 08/12/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The etiopathogenesis of developmental dysplasia of the hip (DDH) has not been clarified. This systematic review evaluated current literature concerning all known chromosomes, loci, genes, and their polymorphisms that have been associated or not with the prevalence and severity of DDH. METHODS Following the established methodology of Meta-analysis of Observational Studies in Epidemiology guidelines, MEDLINE, EMBASE, and Cochrane Register of Controlled Trials were systematically searched from inception to January 2019. RESULTS Forty-five studies were finally included. The majority of genetic studies were candidate gene association studies assessing Chinese populations with moderate methodological quality. Among the most frequently studied are the first, third, 12th,17th, and 20th chromosomes. No gene was firmly associated with DDH phenotype. Studies from different populations often report conflicting results on the same single-nucleotide polymorphism (SNP). The SNP rs143384 of GDF5 gene on chromosome 20 demonstrated the most robust relationship with DDH phenotype in association studies. The highest odds of coinheritance in linkage studies have been reported for regions of chromosome 3 and 13. Five SNPs have been associated with the severity of DDH. Animal model studies validating previous human findings provided suggestive evidence of an inducing role of mutations of the GDF5, CX3CR1, and TENM3 genes in DDH etiopathogenesis. CONCLUSION DDH is a complex disorder with environmental and genetic causes. However, no firm correlation between genotype and DDH phenotype currently exists. Systematic genome evaluation in studies with larger sample size, better methodological quality, and assessment of DDH patients is necessary to clarify the DDH heredity. The role of next-generation sequencing techniques is promising.
Collapse
Affiliation(s)
- Eustathios Kenanidis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece; Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Nifon K Gkekas
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece; Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Areti Karasmani
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece
| | - Panagiotis Anagnostis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece
| | | | - Eleftherios Tsiridis
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Thessaloniki, Balkan Center, Greece; Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Thessaloniki, Greece
| |
Collapse
|
6
|
Akiyama M, Ishigaki K, Sakaue S, Momozawa Y, Horikoshi M, Hirata M, Matsuda K, Ikegawa S, Takahashi A, Kanai M, Suzuki S, Matsui D, Naito M, Yamaji T, Iwasaki M, Sawada N, Tanno K, Sasaki M, Hozawa A, Minegishi N, Wakai K, Tsugane S, Shimizu A, Yamamoto M, Okada Y, Murakami Y, Kubo M, Kamatani Y. Characterizing rare and low-frequency height-associated variants in the Japanese population. Nat Commun 2019; 10:4393. [PMID: 31562340 PMCID: PMC6764965 DOI: 10.1038/s41467-019-12276-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/27/2019] [Indexed: 12/29/2022] Open
Abstract
Human height is a representative phenotype to elucidate genetic architecture. However, the majority of large studies have been performed in European population. To investigate the rare and low-frequency variants associated with height, we construct a reference panel (N = 3,541) for genotype imputation by integrating the whole-genome sequence data from 1,037 Japanese with that of the 1000 Genomes Project, and perform a genome-wide association study in 191,787 Japanese. We report 573 height-associated variants, including 22 rare and 42 low-frequency variants. These 64 variants explain 1.7% of the phenotypic variance. Furthermore, a gene-based analysis identifies two genes with multiple height-increasing rare and low-frequency nonsynonymous variants (SLC27A3 and CYP26B1; PSKAT-O < 2.5 × 10−6). Our analysis shows a general tendency of the effect sizes of rare variants towards increasing height, which is contrary to findings among Europeans, suggesting that height-associated rare variants are under different selection pressure in Japanese and European populations. Thousands of genetic loci are known to associate with human height, but these are mainly based on studies in European ancestry populations. Here, Akiyama et al. construct a genotype reference panel for the Japanese population followed by GWAS and report 573 height associated variants in 191,787 Japanese.
Collapse
Affiliation(s)
- Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Saori Sakaue
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Momoko Horikoshi
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka, 565-8565, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115, USA
| | - Sadao Suzuki
- Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.,Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan.,Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medical University, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.,Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.,Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.,Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
7
|
Ma Q, Ma Z, Liang M, Luo F, Xu J, Dou C, Dong S. The role of physical forces in osteoclastogenesis. J Cell Physiol 2019; 234:12498-12507. [PMID: 30623443 DOI: 10.1002/jcp.28108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
The movements of life at every level from organs, tissues, cells to sub-cells, are all conducted in certain physical environments. In the human body, skeletal tissue among all connective tissues is influenced the most by physical forces. Studying the biological behavior of bone cells under different physical environments is helpful in further understanding bone homeostasis and metabolism. Among all bone cells, osteoclast (OC) and OC steered bone remodeling is one of the key points in bone metabolism. In the past few decades, people's understanding of OC was mostly limited to its involvement of bone resorption under physiological and pathological conditions. However, more and more studies started to focus on how physical forces affect the formation and differentiation of OC. This review tries to illustrate the knowledge up to date about how osteoclastogenesis is regulated by physical forces through direct and indirect ways, including fluid shear force, compressive force, and microgravity. The direct way describes the straightforward effects produced by different forces in osteoclastogenesis, whereas the indirect way describes the effects of different forces in osteoclastogenesis through regulation of other bone cells when a certain force is applied. Molecular mechanisms were analyzed and reviewed in both direct and indirect regulation by different forces. Finally, we discussed the status quo and tendency of related research, as well as other unresolved issues, and some future prospects.
Collapse
Affiliation(s)
- Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Zaisong Ma
- Department of Orthopedics, General Hospital of Xinjiang Command, Urumqi, Xinjiang, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| |
Collapse
|
8
|
Yanoshita M, Hirose N, Okamoto Y, Sumi C, Takano M, Nishiyama S, Asakawa-Tanne Y, Horie K, Onishi A, Yamauchi Y, Mitsuyoshi T, Kunimatsu R, Tanimoto K. Cyclic Tensile Strain Upregulates Pro-Inflammatory Cytokine Expression Via FAK-MAPK Signaling in Chondrocytes. Inflammation 2018; 41:1621-1630. [DOI: 10.1007/s10753-018-0805-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Zhu LQ, Su GH, Dai J, Zhang WY, Yin CH, Zhang FY, Zhu ZH, Guo ZX, Fang JF, Zou CD, Chen XG, Zhang Y, Xu CY, Zhen YF, Wang XD. Whole genome sequencing of pairwise human subjects reveals DNA mutations specific to developmental dysplasia of the hip. Genomics 2018; 111:320-326. [PMID: 29486210 DOI: 10.1016/j.ygeno.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common congenital malformation characterized by mismatch in shape between the femoral head and acetabulum, and leads to hip dysplasia. To date, the pathogenesis of DDH is poorly understood and may involve multiple factors, including genetic predisposition. However, comprehensive genetic analysis has not been applied to investigate a genetic component of DDH. In the present study, 10 pairs of healthy fathers and DDH daughters were enrolled to identify genetic hallmarks of DDH using high throughput whole genome sequencing. The DDH-specific DNA mutations were found in each patient. Overall 1344 genes contained DDH-specific mutations. Functional enrichment analysis showed that these genes played important roles in the cytoskeleton, microtubule cytoskeleton, sarcoplasm and microtubule associated complex. These functions affected osteoblast and osteoclast development. Therefore, we proposed that the DDH-specific mutations might affect bone development, and caused DDH. Our pairwise high throughput sequencing results comprehensively delineated genetic hallmarks of DDH. Further research into the biological impact of these mutations may inform the development of DDH diagnostic tools and allow neonatal gene screening.
Collapse
Affiliation(s)
- Lun-Qing Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Guang-Hao Su
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jin Dai
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Wen-Yan Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chun-Hua Yin
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Fu-Yong Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhen-Hua Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhi-Xiong Guo
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jian-Feng Fang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cheng-da Zou
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing-Guang Chen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Ya Zhang
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cai-Ying Xu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yun-Fang Zhen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|