1
|
Zheng W, Zhou C, Xue Z, Qiao L, Wang J, Lu F. Integrative analysis of a novel signature incorporating metabolism and stemness-related genes for risk stratification and assessing clinical outcomes and therapeutic responses in lung adenocarcinoma. BMC Cancer 2025; 25:591. [PMID: 40170009 PMCID: PMC11963273 DOI: 10.1186/s12885-025-13984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Metabolism and stemness-related genes (msRGs) are critical in the development and progression of lung adenocarcinoma (LUAD). Nevertheless, reliable prognostic risk signatures derived from msRGs have yet to be established. METHODS In this study, we downloaded and analyzed RNA-sequencing and clinical data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed univariate and multivariate Cox regression analyses, along with least absolute shrinkage and selection operator (LASSO) regression analysis, to identify msRGs that are linked to the prognosis of LUAD and to develop the prognostic risk signature. The prognostic value was evaluated using Kaplan-Meier analysis and log-rank tests. We generated receiver operating characteristic (ROC) curves to evaluate the predictive capability of the prognostic signature. To estimate the relative proportions of infiltrating immune cells, we utilized the CIBERSORT algorithm and the MCPCOUNTER method. The prediction of the half-maximal inhibitory concentration (IC50) for commonly used chemotherapy drugs was conducted through ridge regression employing the "pRRophetic" R package. The validation of our analytical findings was performed through both in vivo and in vitro studies. RESULTS A novel five-gene prognostic risk signature consisting of S100P, GPX2, PRC1, ARNTL2, and RGS20 was developed based on the msRGs. A risk score derived from this gene signature was utilized to stratify LUAD patients into high- and low-risk groups, with the former exhibiting significantly poorer overall survival (OS). A nomogram was constructed incorporating the risk score and other clinical characteristics, showcasing strong capabilities in estimating the OS rates for LUAD patients. Furthermore, we observed notable differences in the infiltration of various immune cell subtypes, as well as in responses to immunotherapy and chemotherapy, between the low-risk and high-risk groups. Results from gene set enrichment analysis (GSEA) and in vitro studies indicated that the prognostic signature gene ARNTL2 influenced the prognosis of LUAD patients, primarily through the activation of the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS Utilizing this gene signature for risk stratification could help with clinical treatment management and improve the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Wanrong Zheng
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Chuchu Zhou
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Zixin Xue
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Ling Qiao
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jianjun Wang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Feng Lu
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Ding X, Li X, Jiang Y, Li Y, Li H, Shang L, Feng G, Zhang H, Xu Z, Yang L, Li B, Zhao RC. RGS20 promotes non-small cell lung carcinoma proliferation via autophagy activation and inhibition of the PKA-Hippo signaling pathway. Cancer Cell Int 2024; 24:93. [PMID: 38431606 PMCID: PMC10909273 DOI: 10.1186/s12935-024-03282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways. METHODS Immunohistochemistry and lung cancer tissue microarray were used to verify the expression of RGS20 between NSCLC patients. CCK8 and cell cloning were conducted to determine the proliferation ability of H1299 and Anip973 cells in vitro. Furthermore, Transcriptome sequencing was performed to show enrichment genes and pathways. Immunofluorescence was used to detect the translocation changes of YAP to nucleus. Western blotting demonstrated different expressions of autophagy and the Hippo-PKA signal pathway. In vitro and in vivo experiments verified whether overexpression of RGS20 affect the proliferation and autophagy of NSCLC through regulating the Hippo pathway. RESULTS The higher RGS20 expression was found to be significantly correlated with a poorer five-year survival rate. Further, RGS20 accelerated cell proliferation by increasing autophagy. Transcriptomic sequencing suggested the involvement of the Hippo signaling pathway in the action of RGS20 in NSCLC. RGS20 activation reduced YAP phosphorylation and facilitated its nuclear translocation. Remarkably, inhibiting Hippo signaling with GA-017 promoted cell proliferation and activated autophagy in RGS20 knock-down cells. However, forskolin, a GPCR activator, increased YAP phosphorylation and reversed the promoting effect of RGS20 in RGS20-overexpressing cells. Lastly, in vivo experiments further confirmed role of RGS20 in aggravating tumorigenicity, as its overexpression increased NSCLC cell proliferation. CONCLUSION Our findings indicate that RGS20 drives NSCLC cell proliferation by triggering autophagy via the inhibition of PKA-Hippo signaling. These insights support the role of RGS20 as a promising novel molecular marker and a target for future targeted therapies in lung cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Ding
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Yanxia Jiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lipeng Shang
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Guilin Feng
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Ziyuan Xu
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China
| | - Lina Yang
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
| | - Robert Chunhua Zhao
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, Qingdao, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Pastena P, Perera H, Martinino A, Kartsonis W, Giovinazzo F. Unraveling Biomarker Signatures in Triple-Negative Breast Cancer: A Systematic Review for Targeted Approaches. Int J Mol Sci 2024; 25:2559. [PMID: 38473804 PMCID: PMC10931553 DOI: 10.3390/ijms25052559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, marked by poor outcomes and dismal prognosis. Due to the absence of targetable receptors, chemotherapy still represents the main therapeutic option. Therefore, current research is now focusing on understanding the specific molecular pathways implicated in TNBC, in order to identify novel biomarker signatures and develop targeted therapies able to improve its clinical management. With the aim of identifying novel molecular features characterizing TNBC, elucidating the mechanisms by which these molecular biomarkers are implicated in the tumor development and progression, and assessing the impact on cancerous cells following their inhibition or modulation, we conducted a literature search from the earliest works to December 2023 on PubMed, Scopus, and Web Of Science. A total of 146 studies were selected. The results obtained demonstrated that TNBC is characterized by a heterogeneous molecular profile. Several biomarkers have proven not only to be characteristic of TNBC but also to serve as potential effective therapeutic targets, holding the promise of a new era of personalized treatments able to improve its prognosis. The pre-clinical findings that have emerged from our systematic review set the stage for further investigation in forthcoming clinical trials.
Collapse
Affiliation(s)
- Paola Pastena
- Department of Medicine, Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Hiran Perera
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | | | - William Kartsonis
- Renaissance School of Medicine at Stony Brook University, Stony Brook, Brookhaven, NY 11794, USA
| | - Francesco Giovinazzo
- Department of Surgery, Saint Camillus Hospital, 31100 Treviso, Italy
- Department of Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- Department of Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Yang C, Zhang X, Yang X, Lian F, Sun Z, Huang Y, Shen W. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal 2023; 21:316. [PMID: 37924113 PMCID: PMC10623796 DOI: 10.1186/s12964-023-01334-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.
Collapse
Affiliation(s)
- Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Zongrun Sun
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
6
|
Zhang Q, Sjögren B. Palmitoylation of RGS20 affects Gα o-mediated signaling independent of its GAP activity. Cell Signal 2023; 107:110682. [PMID: 37075876 DOI: 10.1016/j.cellsig.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Regulator of protein signaling (RGS20) is a member of the RGS protein superfamily, which serve as key negative regulators of G protein-mediated signal transduction. Through their GTPase accelerating protein (GAP) activity, RGS proteins deactivate α-subunits of heterotrimeric G proteins. In addition, the majority of RGS proteins also have the ability to act through other, non-GAP related, functions. RGS20 is one of three members of the RZ subfamily, which all show selective GAP activity towards Gαz, however emerging data suggest that RGS20 can also regulate Gi/o-mediated signaling. While increased RGS20 expression is associated with the progression of multiple cancers, a large gap still exists relating to the mechanisms of RGS20 regulation and function. RGS20 contains a poly-cysteine string motif and a conserved cysteine in RGS domain, which are assumed to be palmitoylated. Palmitoylation, an important post-translational modification, plays an important role in cells by changing cellular functions of proteins. Consequently, the aim of this study was to confirm that RGS20 is palmitoylated and determine how palmitoylation affects its inhibition of Gαo-mediated signaling. We found a significant positive correlation between RGS20 palmitoylation and its association with active Gαo. We also showed that a conserved cysteine residue in the RGS domain is a critical site for its palmitoylation, with large impact on its association with Gαo. Palmitoylation on this site did not affect its GAP activity, however, it increased the inhibition of Gαo-mediated cAMP signaling. Altogether these data suggest that palmitoylation is a regulatory mechanism controlling RGS20 function, and that RGS20 can inhibit Gαo signaling through both GAP activity and non-GAP mechanisms.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
7
|
Regulator of G Protein Signaling 20 Correlates with Long Intergenic Non-Coding RNA (lincRNAs) Harboring Oncogenic Potential and Is Markedly Upregulated in Hepatocellular Carcinoma. BIOLOGY 2022; 11:biology11081174. [PMID: 36009801 PMCID: PMC9405539 DOI: 10.3390/biology11081174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is at the forefront of the global cancer burden, and biomarkers for HCC are constantly being sought. Interestingly, RGS (Regulators of G protein signaling) proteins, which negatively regulate GPCR signaling, have been associated with various cancers, with some members of the RGS family being associated with liver cancer as well. Considering this, we investigated the role of RGS20 as a potential prognostic marker in 28 different cancer types with special emphasis on HCC. By using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data, our analysis revealed that (a) RGS20 was strongly upregulated in tumor tissue compared with adjacent normal tissue of HCC patients; (b) RGS20 was strongly associated with some important clinical parameters such as alpha-fetoprotein and tumor grade in the HCC patients; (c) besides HCC (p < 0.001), RGS20 was found to be an important factor for survival in four other cancers (clear renal cell carcinoma: p < 0.001, lung adenocarcinoma: p = 0.004, mesothelioma: p = 0.039, ovarian serous cystadenocarcinoma: p = 0.048); (d) RGS20 was found to be significantly associated with some tumor-related signaling pathways and long intergenic non-coding RNAs (lincRNAs: LINC00511, PVT1, MIR4435-2HG, BCYRN1, and MAPKAPK5-AS1) that exhibit oncogenic potential. Taken together, we showed that RGS20 correlates with a few HCC-associated lincRNAs harboring oncogenic potential and is markedly upregulated in HCC patients. Our analysis further supports the putative function of RGS proteins, particularly RGS20, in cancer.
Collapse
|
8
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
9
|
RGS20 Promotes Tumor Progression through Modulating PI3K/AKT Signaling Activation in Penile Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1293622. [PMID: 35498542 PMCID: PMC9042636 DOI: 10.1155/2022/1293622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Regulator of G protein signaling 20 (RGS20) plays an important role in regulating neuronal G protein-coupled receptor signaling; however, its expression and oncogenic function in penile cancer (PC) remains unclear. Here, we observed high RGS20 expression in PC tissues compared to normal/adjacent penile tissues, which was closely associated with tumor stage, nodal status, and pelvic metastasis in our PC cohort. The cellular functional analysis of RGS20 revealed that manipulation of the RGS20 expression markedly affected cell viability, BrdU incorporation, soft agar clonogenesis, caspase-3 activity, and cell migration/invasion in PC cell models. Moreover, RGS20 could interact with PI3K p85α subunit and regulate PI3K/AKT signaling activation in PC cell lines. Knockdown of the PI3K p85α or p110α subunit attenuated cell viability, BrdU incorporation, soft agar clonogenesis, and cell migration/invasion in PC cell lines. In contrast, the overexpression of constitutively activated PI3K p110α mutant restored cell proliferation and cell migration/invasion caused by RGS20 depletion in PC cells. Consistent with the in vitro findings, RGS20 depletion attenuated PI3K/AKT signaling activation and suppressed tumor growth in a murine xenograft model. Importantly, the high RGS20 expression was associated with PI3K/AKT signaling activation and unfavorable progression-free/overall survival, highlighting the clinical relevance of RGS20/PI3K/AKT signaling in PC. In conclusion, the aberrant RGS20 expression may serve as a diagnostic and prognostic marker for PC. RGS20 may promote PC progression through modulating PI3K/AKT signaling activation, which may assist with the development of RGS20-targeting therapeutics in the future.
Collapse
|
10
|
Jiang L, Shen J, Zhang N, He Y, Wan Z. Association of RGS20 expression with the progression and prognosis of renal cell carcinoma. Oncol Lett 2021; 22:643. [PMID: 34386065 PMCID: PMC8299006 DOI: 10.3892/ol.2021.12904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Regulator of G protein signaling 20 (RGS20) has been shown to be highly expressed in various types of cancer. The present study aimed to investigate the effects of RGS20 in patients with renal cell carcinoma (RCC) and in RCC cells. Bioinformatics analysis was performed to analyze the role of RGS20 in RCC. Quantitative PCR and western blotting were used to determine the mRNA and protein expression levels of RGS20 in cells, respectively. After RGS20 inhibition, the proliferation, apoptosis, migration and invasiveness of A-498 cells were tested using MTT assay, EdU assay, propidium iodide staining, Annexin V-FITC/PI kit, wound healing assay and Transwell assay. High RGS20 expression was closely associated with the progression and immune infiltration of RCC, and may be considered as an independent indicator of poor prognosis in RCC. After knocking down RGS20, the proliferation, migration and invasiveness of cells were impaired, the cell cycle was arrested at the G0/G1 phase, and the level of apoptosis was increased. In addition, the mRNA expression levels of securin, CDC20 and cyclin B1 were decreased in RGS20-knockdown cells. RGS20 expression was significantly associated with the infiltration level of activated CD4 T cells, type 1 T helper cells and activated dendritic cells. In summary, RGS20 expression was associated with RCC progression and poor prognosis; thus, it may be used to estimate the prognosis of RCC and may serve as a new potential treatment strategy for RCC.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Jiangwei Shen
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Ning Zhang
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Yongchao He
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Zhenghua Wan
- Department of Urology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
11
|
Regulator of G protein signaling 20 promotes proliferation and migration in bladder cancer via NF-κB signaling. Biomed Pharmacother 2019; 117:109112. [PMID: 31212130 DOI: 10.1016/j.biopha.2019.109112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/25/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bladder cancer is a complicated disease with high rate of morbidity and mortality, in which proliferation and migration are both well acknowledged as aggressive phenotypes of bladder cancer cells. A better understanding of the mechanisms of tumor proliferation and migration would provide an insight into cancer progression and provide effective therapeutic strategies. METHODS The expression of RGS20 was detected using qRT-PCR,western blotting and immunohistochemistry. MTT, Colony formation, anchorage-independent growth assay, and transwell assay were used to evaluate the pro-proliferation and pro-migration potential of RGS20 in vitro. Tumor growth was monitored and analyzed in an animal model. Luciferase activity assay, nuclear extract analysis, and multiple blockade of NF-κB were used to evaluate NF-κB signaling activity. RESULTS It revealed that RGS20 was significantly upregulated in bladder cancer and increased RGS20 expression correlated significantly with worse 5-year overall survival. Ectopic overexpression of RGS20 accelerated the proliferation and migration of bladder cancer cells, whereas knockdown of RGS20 inhibited these effects. Mechanistically, RGS20 could activate NF-κB signaling, which played a crucial role in RGS20's effects on proliferation, migration, and tumorigenicity of bladder cancer cells. CONCLUSION Our study highlights that RGS20 acted as an oncogene in bladder cancer and a better understanding of RGS20's functions might provide the potential for clinical intervention in this disease.
Collapse
|
12
|
Zhang R, Lai L, Dong X, He J, You D, Chen C, Lin L, Zhu Y, Huang H, Shen S, Wei L, Chen X, Guo Y, Liu L, Su L, Shafer A, Moran S, Fleischer T, Bjaanæs MM, Karlsson A, Planck M, Staaf J, Helland Å, Esteller M, Wei Y, Chen F, Christiani DC. SIPA1L3 methylation modifies the benefit of smoking cessation on lung adenocarcinoma survival: an epigenomic-smoking interaction analysis. Mol Oncol 2019; 13:1235-1248. [PMID: 30924596 PMCID: PMC6487703 DOI: 10.1002/1878-0261.12482] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Smoking cessation prolongs survival and decreases mortality of patients with non-small-cell lung cancer (NSCLC). In addition, epigenetic alterations of some genes are associated with survival. However, potential interactions between smoking cessation and epigenetics have not been assessed. Here, we conducted an epigenome-wide interaction analysis between DNA methylation and smoking cessation on NSCLC survival. We used a two-stage study design to identify DNA methylation-smoking cessation interactions that affect overall survival for early-stage NSCLC. The discovery phase contained NSCLC patients from Harvard, Spain, Norway, and Sweden. A histology-stratified Cox proportional hazards model adjusted for age, sex, clinical stage, and study center was used to test DNA methylation-smoking cessation interaction terms. Interactions with false discovery rate-q ≤ 0.05 were further confirmed in a validation phase using The Cancer Genome Atlas database. Histology-specific interactions were identified by stratification analysis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. We identified one CpG probe (cg02268510SIPA1L3 ) that significantly and exclusively modified the effect of smoking cessation on survival in LUAD patients [hazard ratio (HR)interaction = 1.12; 95% confidence interval (CI): 1.07-1.16; P = 4.30 × 10-7 ]. Further, the effect of smoking cessation on early-stage LUAD survival varied across patients with different methylation levels of cg02268510SIPA1L3 . Smoking cessation only benefited LUAD patients with low methylation (HR = 0.53; 95% CI: 0.34-0.82; P = 4.61 × 10-3 ) rather than medium or high methylation (HR = 1.21; 95% CI: 0.86-1.70; P = 0.266) of cg02268510SIPA1L3 . Moreover, there was an antagonistic interaction between elevated methylation of cg02268510SIPA1L3 and smoking cessation (HRinteraction = 2.1835; 95% CI: 1.27-3.74; P = 4.46 × 10-3 ). In summary, smoking cessation benefited survival of LUAD patients with low methylation at cg02268510SIPA1L3 . The results have implications for not only smoking cessation after diagnosis, but also possible methylation-specific drug targeting.
Collapse
|
13
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
14
|
Zhao J, Cheng W, He X, Liu Y, Li J, Sun J, Li J, Wang F, Gao Y. Construction of a specific SVM classifier and identification of molecular markers for lung adenocarcinoma based on lncRNA-miRNA-mRNA network. Onco Targets Ther 2018; 11:3129-3140. [PMID: 29872324 PMCID: PMC5975616 DOI: 10.2147/ott.s151121] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Novel diagnostic predictors and drug targets are needed for LUAD (lung adenocarcinoma). We aimed to build a specific SVM (support vector machine) classifier for diagnosis of LUAD and identify molecular markers with prognostic value for LUAD. Methods The expression differences of miRNAs, lncRNAs and mRNAs between LUAD and normal samples were compared using data from TCGA (The Cancer Genome Atlas) database. A LUAD related miRNA-lncRNA-mRNA network was constructed, based on which feature genes were selected for the construction of LUAD specific SVM classifier. The robustness and transferability of SVM classifier were validated using gene expression profile datasets GSE43458 and GSE10072. Prognostic markers were identified from the network. A set of LUAD-related differentially expressed miRNAs, lncRNAs and miRNAs were identified and a LUAD related miRNA-lncRNA-mRNA network was obtained. The LUAD specific SVM classifier constructed on the basis of the network was robust and efficient for classification of samples from TCGA dataset and two independent validation datasets. Results Eight RNAs with prognostic value were identified, including hsa-miR-96, hsa-miR-204, PGM5P2 (phosphoglucomutase 5 pseudogene 2), SFTA1P (surfactant associated 1), RGS20 (regulator of G protein signaling 20), RGS9BP (RGS9-binding protein), FGB (fibrinogen beta chain) and INA (alpha-internexin). Among them, RGS20 and INA were regulated by hsa-miR-96. RGS20 was also regulated by hsa-miR-204, which was a potential target of SFTA1P. Conclusion The LUAD specific SVM classifier may serve as a novel diagnostic predictor. hsa-miR-96, hsa-miR-204, PGM5P2, SFTA1P, RGS20, RGS9BP, FGB and INA may serve as prognostic markers in clinical practice.
Collapse
Affiliation(s)
- Jingming Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Wei Cheng
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xigang He
- Department of Respiratory Medicine, People's Hospital of Rizhao Lanshan, Lanshan District, Rizhao, P.R. China
| | - Yanli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Ji Li
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Jiaxing Sun
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Jinfeng Li
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Fangfang Wang
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yufang Gao
- Department of President's Office, The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|