1
|
Lia A, Sansevero G, Chiavegato A, Sbrissa M, Pendin D, Mariotti L, Pozzan T, Berardi N, Carmignoto G, Fasolato C, Zonta M. Rescue of astrocyte activity by the calcium sensor STIM1 restores long-term synaptic plasticity in female mice modelling Alzheimer's disease. Nat Commun 2023; 14:1590. [PMID: 36949142 PMCID: PMC10033875 DOI: 10.1038/s41467-023-37240-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Calcium dynamics in astrocytes represent a fundamental signal that through gliotransmitter release regulates synaptic plasticity and behaviour. Here we present a longitudinal study in the PS2APP mouse model of Alzheimer's disease (AD) linking astrocyte Ca2+ hypoactivity to memory loss. At the onset of plaque deposition, somatosensory cortical astrocytes of AD female mice exhibit a drastic reduction of Ca2+ signaling, closely associated with decreased endoplasmic reticulum Ca2+ concentration and reduced expression of the Ca2+ sensor STIM1. In parallel, astrocyte-dependent long-term synaptic plasticity declines in the somatosensory circuitry, anticipating specific tactile memory loss. Notably, we show that both astrocyte Ca2+ signaling and long-term synaptic plasticity are fully recovered by selective STIM1 overexpression in astrocytes. Our data unveil astrocyte Ca2+ hypoactivity in neocortical astrocytes as a functional hallmark of early AD stages and indicate astrocytic STIM1 as a target to rescue memory deficits.
Collapse
Affiliation(s)
- Annamaria Lia
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Gabriele Sansevero
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Angela Chiavegato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Miriana Sbrissa
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Diana Pendin
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Letizia Mariotti
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, Padua, Italy
| | - Nicoletta Berardi
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR), Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
3
|
Pillai AG, Nadkarni S. Amyloid pathology disrupts gliotransmitter release in astrocytes. PLoS Comput Biol 2022; 18:e1010334. [PMID: 35913987 PMCID: PMC9371304 DOI: 10.1371/journal.pcbi.1010334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulation of amyloid-beta (Aβ) is associated with synaptic dysfunction and destabilization of astrocytic calcium homeostasis. A growing body of evidence support astrocytes as active modulators of synaptic transmission via calcium-mediated gliotransmission. However, the details of mechanisms linking Aβ signaling, astrocytic calcium dynamics, and gliotransmission are not known. We developed a biophysical model that describes calcium signaling and the ensuing gliotransmitter release from a single astrocytic process when stimulated by glutamate release from hippocampal neurons. The model accurately captures the temporal dynamics of microdomain calcium signaling and glutamate release via both kiss-and-run and full-fusion exocytosis. We investigate the roles of two crucial calcium regulating machineries affected by Aβ: plasma-membrane calcium pumps (PMCA) and metabotropic glutamate receptors (mGluRs). When we implemented these Aβ-affected molecular changes in our astrocyte model, it led to an increase in the rate and synchrony of calcium events. Our model also reproduces several previous findings of Aβ associated aberrant calcium activity, such as increased intracellular calcium level and increased spontaneous calcium activity, and synchronous calcium events. The study establishes a causal link between previous observations of hyperactive astrocytes in Alzheimer’s disease (AD) and Aβ-induced modifications in mGluR and PMCA functions. Analogous to neurotransmitter release, gliotransmitter exocytosis closely tracks calcium changes in astrocyte processes, thereby guaranteeing tight control of synaptic signaling by astrocytes. However, the downstream effects of AD-related calcium changes in astrocytes on gliotransmitter release are not known. Our results show that enhanced rate of exocytosis resulting from modified calcium signaling in astrocytes leads to a rapid depletion of docked vesicles that disrupts the crucial temporal correspondence between a calcium event and vesicular release. We propose that the loss of temporal correspondence between calcium events and gliotransmission in astrocytes pathologically alters astrocytic modulation of synaptic transmission in the presence of Aβ accumulation. Signaling by astrocytes is critical to information processing at synapses, and its aberration plays a central role in neurological diseases, especially Alzheimer’s disease (AD). A complete characterization of calcium signaling and the resulting pattern of gliotransmitter release from fine astrocytic processes are not accessible to current experimental tools. We developed a biophysical model that can quantitatively describe signaling by astrocytes in response to a wide range of synaptic activity. We show that AD-related molecular alterations disrupt the concurrence of calcium and gliotransmitter release events, a characterizing feature that enables astrocytes to influence synaptic signaling.
Collapse
Affiliation(s)
| | - Suhita Nadkarni
- Indian Institute of Science Education and Research Pune, Pune, India
- * E-mail:
| |
Collapse
|
4
|
Birla H, Xia J, Gao X, Zhao H, Wang F, Patel S, Amponsah A, Bekker A, Tao YX, Hu H. Toll-like receptor 4 activation enhances Orai1-mediated calcium signal promoting cytokine production in spinal astrocytes. Cell Calcium 2022; 105:102619. [PMID: 35780680 PMCID: PMC9928533 DOI: 10.1016/j.ceca.2022.102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
Toll-like receptor 4 (TLR4) has been implicated in pathological conditions including chronic pain. Activation of astrocytic TLRs leads to the synthesis of pro-inflammatory cytokines like interleukin 6 (IL-6) and tumor necrosis factor-ɑ (TNF-α), which can cause pathological inflammation and tissue damage in the central nervous system. However, the mechanisms of TLR4-mediated cytokine releases from astrocytes are incomplete understood. Our previous study has shown that Orai1, a key component of calcium release activated calcium channels (CRACs), mediates Ca2+ entry in astrocytes. How Orai1 contributes to TLR4 signaling remains unclear. Here we show that Orai1 deficiency drastically attenuated lipopolysaccharides (LPS)-induced TNF-α and IL-6 production in astrocytes. Acute LPS treatment did not induce Ca2+ response and had no effect on thapsigargin (Ca2+-ATPase inhibitor)-induced store-dependent Ca2+ entry. Inhibition or knockdown of Orai1 showed no reduction in LPS-induced p-ERK1/2, p-c-Jun N-terminal kinase, or p-p38 MAPK activation. Interestingly, Orai1 protein level was significantly increased after LPS exposure, which was blocked by inhibition of NF-κB activity. LPS significantly increased basal Ca2+ level and SOCE after exposure to astrocytes. Moreover, elevating extracellular Ca2+ concentration increased cytosolic Ca2+ level, which was almost eliminated in Orai1 KO astrocytes. Our study reports novel findings that Orai1 acts as a Ca2+ leak channel regulating the basal Ca2+ level and enhancing cytokine production in astrocytes under the inflammatory condition. These findings highlight an important role of Orai1 in astrocytic TRL4 function and may suggest that Orai1 could be a potential therapeutic target for neuroinflammatory disorders including chronic pain.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jingsheng Xia
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Xinghua Gao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Hui Zhao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Fengying Wang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Shivam Patel
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Akwasi Amponsah
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103,Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA; Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
5
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
6
|
Serrat R, Covelo A, Kouskoff V, Delcasso S, Ruiz-Calvo A, Chenouard N, Stella C, Blancard C, Salin B, Julio-Kalajzić F, Cannich A, Massa F, Varilh M, Deforges S, Robin LM, De Stefani D, Busquets-Garcia A, Gambino F, Beyeler A, Pouvreau S, Marsicano G. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep 2021; 37:110133. [PMID: 34936875 DOI: 10.1016/j.celrep.2021.110133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Ana Covelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Vladimir Kouskoff
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Sebastien Delcasso
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Andrea Ruiz-Calvo
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Carol Stella
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Corinne Blancard
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Benedicte Salin
- University of Bordeaux, 33077 Bordeaux, France; Institut de Biochimie et Genetique Cellulaires, CNRS UMR 5095, Bordeaux, France
| | - Francisca Julio-Kalajzić
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Astrid Cannich
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Federico Massa
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Marjorie Varilh
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Severine Deforges
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Laurie M Robin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Arnau Busquets-Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Frederic Gambino
- University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - Anna Beyeler
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, 33077 Bordeaux, France; University of Bordeaux, 33077 Bordeaux, France.
| |
Collapse
|
7
|
Khaitin A. Calcium in Neuronal and Glial Response to Axotomy. Int J Mol Sci 2021; 22:ijms222413344. [PMID: 34948141 PMCID: PMC8706492 DOI: 10.3390/ijms222413344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotrauma assumes an instant or delayed disconnection of axons (axotomy), which affects not only neurons, but surrounding glia as well. Not only mechanically injured glia near the site of disconnection, especially transection, is subjected to the damage, but also glia that is remote from the lesion site. Glial cells, which surround the neuronal body, in turn, support neuron survival, so there is a mutual protection between neuron and glia. Calcium signaling is a central mediator of all post-axotomy events, both in neuron and glia, playing a critical role in their survival/regeneration or death/degeneration. The involvement of calcium in post-axotomy survival of the remote, mechanically intact glia is poorly studied. The purpose of this review is to sum up the calcium-involving mechanisms in responses of neurons and glial cells to axotomy to show their importance and to give some suggestions for future research of remote glia in this context.
Collapse
Affiliation(s)
- Andrey Khaitin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
8
|
Dzyubenko E, Prazuch W, Pillath-Eilers M, Polanska J, Hermann DM. Analysing Intercellular Communication in Astrocytic Networks Using "Astral". Front Cell Neurosci 2021; 15:689268. [PMID: 34211372 PMCID: PMC8239356 DOI: 10.3389/fncel.2021.689268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Astrocytic networks are critically involved in regulating the activity of neuronal networks. However, a comprehensive and ready-to-use data analysis tool for investigating functional interactions between the astrocytes is missing. We developed the novel software package named "Astral" to analyse intercellular communication in astrocytic networks based on live-cell calcium imaging. Our method for analysing calcium imaging data does not require the assignment of regions of interest. The package contains two applications: the core processing pipeline for detecting and quantifying Ca++ events, and the auxiliary visualization tool for controlling data quality. Our method allows for the network-wide quantification of Ca++ events and the analysis of their intercellular propagation. In a set of proof-of-concept experiments, we examined Ca++ events in flat monolayers of primary astrocytes and confirmed that inter-astrocytic interactions depend on the permeability of gap junctions and connexin hemichannels. The Astral tool is particularly useful for studying astrocyte-neuronal interactions on the network level. We demonstrate that compared with purely astrocytic cultures, spontaneous generation of Ca++ events in astrocytes that were co-cultivated with neurons was significantly increased. Interestingly, the increased astrocytic Ca++ activity after long-term co-cultivation with neurons was driven by the enhanced formation of gap junctions and connexin hemichannels but was not affected by silencing neuronal activity. Our data indicate the necessity for systematic investigation of astrocyte-neuronal interactions at the network level. For this purpose, the Astral software offers a powerful tool for processing and quantifying calcium imaging data.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Wojciech Prazuch
- Department of Data Science and Engineering, Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | - Matthias Pillath-Eilers
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Science, Gliwice, Poland
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Essen, Germany
| |
Collapse
|
9
|
Moro N, Ghavim SS, Sutton RL. Massive efflux of adenosine triphosphate into the extracellular space immediately after experimental traumatic brain injury. Exp Ther Med 2021; 21:575. [PMID: 33850547 PMCID: PMC8027727 DOI: 10.3892/etm.2021.10007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of the current study was to determine effects of mild traumatic brain injury (TBI), with or without blockade of purinergic ATP Y1 (P2Y1) receptors or store-operated calcium channels, on extracellular levels of ATP, glutamate, glucose and lactate. Concentrations of ATP, glutamate, glucose and lactate were measured in cerebral microdialysis samples obtained from the ipsilateral cortex and underlying hippocampus of rats with mild unilateral controlled cortical impact (CCI) or sham injury. Immediately after CCI, a large release of ATP was observed in the cortex (3.53-fold increase of pre-injury value) and hippocampus (2.97-fold increase of pre-injury value), with ATP returning to the baseline levels within 20 min post-injury and remaining stable for during the 3-h sampling period. In agreement with the results of previous studies, there was a significant increase in glutamate 20 min after CCI, which was concomitant with a decrease in extracellular glucose (20 min) and an increase in lactate (40-60 min) in both brain regions after CCI. Addition of a selective P2Y1 receptor blocker (MRS2179 ammonium salt hydrate) to the microdialysis perfusate significantly lowered pre-injury ATP and glutamate levels, and eliminated the post-CCI peaks. Addition of a blocker of store-operated calcium channels [2-aminoethoxy diphenylborinate (2-APB)] to the microdialysis perfusate significantly lowered pre-injury ATP in the hippocampus, and attenuated the post-CCI peak in both the cortex and hippocampus. 2-APB treatment significantly increased baseline glutamate levels, but the values post-injury did not differ from those in the sham group. Pre-injury glucose levels, but not lactate levels, were increased by MRS2179 and decreased by 2-APB. However, none of these treatments substantially altered the CCI-induced reduction in glucose and increase in lactate in the cortex. In conclusion, the results of the present study demonstrated that a short although extensive release of ATP immediately after experimental TBI can be significantly attenuated by blockade of P2Y1 receptors or store-operated calcium channels.
Collapse
Affiliation(s)
- Nobuhiro Moro
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, LA 90095-6901, USA.,Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Sima S Ghavim
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, LA 90095-6901, USA
| | - Richard L Sutton
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, LA 90095-6901, USA
| |
Collapse
|
10
|
Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. eLife 2021; 10:63329. [PMID: 33729913 PMCID: PMC7968927 DOI: 10.7554/elife.63329] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Non-rapid eye movement (NREM) sleep, characterized by slow-wave electrophysiological activity, underlies several critical functions, including learning and memory. However, NREM sleep is heterogeneous, varying in duration, depth, and spatially across the cortex. While these NREM sleep features are thought to be largely independently regulated, there is also evidence that they are mechanistically coupled. To investigate how cortical NREM sleep features are controlled, we examined the astrocytic network, comprising a cortex-wide syncytium that influences population-level neuronal activity. We quantified endogenous astrocyte activity in mice over natural sleep and wake, then manipulated specific astrocytic G-protein-coupled receptor (GPCR) signaling pathways in vivo. We find that astrocytic Gi- and Gq-coupled GPCR signaling separately control NREM sleep depth and duration, respectively, and that astrocytic signaling causes differential changes in local and remote cortex. These data support a model in which the cortical astrocyte network serves as a hub for regulating distinct NREM sleep features. Sleep has many roles, from strengthening new memories to regulating mood and appetite. While we might instinctively think of sleep as a uniform state of reduced brain activity, the reality is more complex. First, over the course of the night, we cycle between a number of different sleep stages, which reflect different levels of sleep depth. Second, the amount of sleep depth is not necessarily even across the brain but can vary between regions. These sleep stages consist of either rapid eye movement (REM) sleep or non-REM (NREM) sleep. REM sleep is when most dreaming occurs, whereas NREM sleep is particularly important for learning and memory and can vary in duration and depth. During NREM sleep, large groups of neurons synchronize their firing to create rhythmic waves of activity known as slow waves. The more synchronous the activity, the deeper the sleep. Vaidyanathan et al. now show that brain cells called astrocytes help regulate NREM sleep. Astrocytes are not neurons but belong to a group of specialized cells called glia. They are the largest glia cell type in the brain and display an array of proteins on their surfaces called G-protein-coupled receptors (GPCRs). These enable them to sense sleep-wake signals from other parts of the brain and to generate their own signals. In fact, each astrocyte can communicate with thousands of neurons at once. They are therefore well-poised to coordinate brain activity during NREM sleep. Using innovative tools, Vaidyanathan et al. visualized astrocyte activity in mice as the animals woke up or fell asleep. The results showed that astrocytes change their activity just before each sleep–wake transition. They also revealed that astrocytes control both the depth and duration of NREM sleep via two different types of GPCR signals. Increasing one of these signals (Gi-GPCR) made the mice sleep more deeply but did not change sleep duration. Decreasing the other (Gq-GPCR) made the mice sleep for longer but did not affect sleep depth. Sleep problems affect many people at some point in their lives, and often co-exist with other conditions such as mental health disorders. Understanding how the brain regulates different features of sleep could help us develop better – and perhaps more specific – treatments for sleep disorders. The current study suggests that manipulating GPCRs on astrocytes might increase sleep depth, for example. But before work to test this idea can begin, we must first determine whether findings from sleeping mice also apply to people.
Collapse
Affiliation(s)
- Trisha V Vaidyanathan
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Max Collard
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Michael E Reitman
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States
| | - Kira E Poskanzer
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, San Francisco, United States
| |
Collapse
|
11
|
Abstract
The contribution of an impaired astrocytic K+ regulation system to epileptic neuronal hyperexcitability has been increasingly recognized in the last decade. A defective K+ regulation leads to an elevated extracellular K+ concentration ([K+]o). When [K+]o reaches peaks of 10-12 mM, it is strongly associated with seizure initiation during hypersynchronous neuronal activities. On the other hand, reactive astrocytes during a seizure attack restrict influx of K+ across the membrane both passively and actively. In addition to decreased K+ buffering, aberrant Ca2+ signaling and declined glutamate transport have also been observed in astrogliosis in epileptic specimens, precipitating an increased neuronal discharge and induction of seizures. This review aims to provide an overview of experimental findings that implicated astrocytic modulation of extracellular K+ in the mechanism of epileptogenesis.
Collapse
Affiliation(s)
- Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA; Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, Sichuan Province, China
| | - Xiaoming Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | - Jun Zhang
- Department of Neurosurgery, PLA General Hospital, Beijing, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health; Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| |
Collapse
|
12
|
Okubo Y, Iino M, Hirose K. Store-operated Ca 2+ entry-dependent Ca 2+ refilling in the endoplasmic reticulum in astrocytes. Biochem Biophys Res Commun 2019; 522:1003-1008. [PMID: 31812243 DOI: 10.1016/j.bbrc.2019.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
Abstract
Astrocytes regulate various brain functions, for which Ca2+ release from the endoplasmic reticulum (ER) often play crucial roles. Because astrocytic ER Ca2+ release is robust and frequent, the ER Ca2+ refilling mechanism should be critical for ongoing Ca2+ signaling in astrocytes. In this study, we focused on the putative functional significance of store-operated Ca2+ entry (SOCE) in ER Ca2+ refilling. We expressed the ER luminal Ca2+ indicator G-CEPIA1er in astrocytes in acute cortical slices to directly monitor the decrease and recovery of ER Ca2+ concentration upon spontaneous or norepinephrine-induced Ca2+ release. Inhibition of SOCE significantly slowed the recovery of ER Ca2+ concentration after Ca2+ release in astrocytes. This delayed recovery resulted in a prolonged decrease in the ER Ca2+ content in astrocytes with periodic spontaneous Ca2+ release, followed by the attenuation of cytosolic Ca2+ responses upon Ca2+ release. Therefore, our results provide direct evidence for the physiological significance of SOCE in ER Ca2+ refilling after ER Ca2+ release.
Collapse
Affiliation(s)
- Yohei Okubo
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Masamitsu Iino
- Division of Cellular and Molecular Pharmacology, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| |
Collapse
|
13
|
Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium 2019; 78:15-25. [DOI: 10.1016/j.ceca.2018.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 12/22/2022]
|
14
|
Chen B, Tjahja J, Malla S, Liebman C, Cho M. Astrocyte Viability and Functionality in Spatially Confined Microcavitation Zone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4889-4899. [PMID: 30638362 DOI: 10.1021/acsami.8b21410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) can result in cell/tissue damage and lead to clinical and neuropsychiatric symptoms. Shock waves from a blast propagate through the brain and initiate cascades of mechanical and physiological events that can adversely affect the brain function. Although studies using animal models and brain slices have shown macroscale changes in the brain tissue in response to blast, systematic elucidation of coupling mechanisms is currently lacking. One mechanism that has been postulated and demonstrated repeatedly is the blast-induced generation and subsequent collapse of micron-size bubbles (i.e., microcavitation). Using a custom-designed exposure system, we have previously reported that upon collapsing of microbubbles, astrocytes exhibited changes in the cell viability, cellular biomechanics, production of reactive oxygen species, and activation of apoptotic signaling pathways. In this paper, we have applied microfabrication techniques and seeded astrocytes in a spatially controlled manner to determine the extent of cell damage from the site of the collapse of microbubbles. Such a novel experimental design is proven to facilitate our effort to examine the altered cell viability and functionality by monitoring the transient calcium spiking activity in real-time. We now report that the effect of microcavitation depends on the distance from which cells are seeded, and the cell functionality assessed by calcium dynamics is significantly diminished in the cells located within ∼800 μm of the collapsing microbubbles. Both calcium influx across the cell membrane via N-type calcium channels and intracellular calcium store are altered in response to microcavitation. Finally, the FDA-approved poloxamer 188 (P188) was used to reconstitute the compromised cell membrane and restore the cell's reparative capability. This finding may lead to a feasible treatment for partially mitigating the tissue damage associated with bTBI.
Collapse
Affiliation(s)
- Bo Chen
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Jessica Tjahja
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sameep Malla
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Caleb Liebman
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Michael Cho
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
15
|
Gong X, Li G, Huang Y, Fu Z, Song X, Chen C, Yang L. Synergistically regulated spontaneous calcium signaling is attributed to cartilaginous extracellular matrix metabolism. J Cell Physiol 2018; 234:9711-9722. [PMID: 30370672 DOI: 10.1002/jcp.27657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Ca2+ has been recognized as a key molecule for chondrocytes, however, the role and mechanism of spontaneous [Ca 2+ ] i signaling in cartilaginous extracellular matrix (ECM) metabolism regulation are unclear. Here we found that spontaneous Ca 2+ signal of in-situ porcine chondrocytes was [Ca 2+ ] o dependent, and mediated by [Ca 2+ ] i store release. T-type voltage-dependent calcium channel (T-VDCC) mediated [Ca 2+ ] o influx was associated with decreased cell viability and expression levels of ECM deposition genes. Further analysis revealed that chondrocytes expressed both inositol 1,4,5-trisphosphate receptor (InsP3R) and Orai isoforms. Inhibition of endoplasmic reticulum (ER) Ca 2+ release and store-operated calcium entry significantly abolished spontaneous [Ca 2+ ] i signaling of in-situ chondrocytes. Moreover, blocking ER Ca 2+ release with InsP3R inhibitors significantly upregulated ECM degradation enzymes production, and was accompanied by decreased proteoglycan and collagen type II intensity. Taken together, our data provided evidence that spontaneous [Ca 2+ ] i signaling of in-situ porcine chondrocytes was tightly regulated by [Ca 2+ ] o influx, InsP3Rs mediated [Ca 2+ ] i store release, and Orais mediated calcium release-activated calcium channels activation. Both T-VDCC mediated [Ca 2+ ] o influx and InsP3Rs mediated ER Ca 2+ release were found crucial to cartilaginous ECM metabolism through distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoming Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
16
|
Gong X, Wang F, Huang Y, Lin X, Chen C, Wang F, Yang L. Magnetic-targeting of polyethylenimine-wrapped iron oxide nanoparticle labeled chondrocytes in a rabbit articular cartilage defect model. RSC Adv 2018; 8:7633-7640. [PMID: 35539110 PMCID: PMC9078383 DOI: 10.1039/c7ra12039g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent form of joint disease and lacks effective treatment. Cell-based therapy through intra-articular injection holds great potential for effective intervention at its early stage. Despite the promising outcomes, major barriers for successful clinical application such as lack of specific targeting of transplanted cells still remain. Here, novel polyethylenimine-wrapped iron oxide nanoparticles (PEI/IONs) were utilized as a magnetic agent, and the in vitro efficiency of PEI/ION labeling, and the influence on the chondrogenic properties of chondrocytes were evaluated; the in vivo feasibility of magnetic-targeting intra-articular injection with PEI/ION labeled autologous chondrocytes was investigated using a rabbit articular cartilage defect model. Our data showed that chondrocytes were conveniently labeled with PEI/IONs in a time- and dose-dependent manner, while the viability was unaffected. No significant decrease in collagen type-II synthesis of labeled chondrocytes was observed at low concentration. Macrographic and histology evaluation at 1 week post intra-articular injection revealed efficient cell delivery at chondral defect sites in the magnetic-targeting group. In addition, chondrocytes in the defect area presented a normal morphology, and the origin of cells within was confirmed by immunohistochemistry staining against BrdU and Prussian blue staining. The present study shows proof of concept experiments in magnetic-targeting of PEI/ION labeled chondrocytes for articular cartilage repair, which might provide new insight to improve current cartilage repair strategies. Magnetic-targeting outcome in the knee joint of experimental rabbit model at 1 week post intra-articular injection.![]()
Collapse
Affiliation(s)
- Xiaoyuan Gong
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Fengling Wang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Yang Huang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Xiao Lin
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Cheng Chen
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Fuyou Wang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| | - Liu Yang
- Center for Joint Surgery
- Southwest Hospital
- Third Military Medical University (Army Medical University)
- Chongqing 400038
- PR China
| |
Collapse
|
17
|
Reparative Effects of Poloxamer P188 in Astrocytes Exposed to Controlled Microcavitation. Ann Biomed Eng 2017; 46:354-364. [PMID: 29110266 DOI: 10.1007/s10439-017-1953-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a neurological dysfunction that can result from a sudden exposure to shockwave and lead to adverse health consequences. Currently, there are no preventive measures that specifically target bTBI. Several hypotheses have been formulated to explain such injuries, including the generation of microcavitation (e.g., microbubbles) in the brain that subsequently collapses with high pressure. This study was designed to explore and elucidate potential therapeutic effects of surfactants (poloxamers P188) to partially repair the damaged brain tissue due to bTBI. A controlled electrical discharge system was designed and validated to generate microbubbles of 20-30 μm in size. Using this system, we tested the hypothesis that the P188 can partially rescue astrocytes exposed to collapsing microbubbles. The immediate impact of the collapse of microbubbles created a crater-like region in which astrocytes detached from the substrate. Of those cells that survived the initial mechanical assault, the poloxamer P188 demonstrated reparative potential by partially restoring calcium spiking and minimizing the production of reactive oxygen species. The FDA-approved P188 may offer a potential therapeutic treatment for those exposed to a blast and suffered bTBI.
Collapse
|
18
|
Bannai H. Molecular membrane dynamics: Insights into synaptic function and neuropathological disease. Neurosci Res 2017; 129:47-56. [PMID: 28826905 DOI: 10.1016/j.neures.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/14/2017] [Accepted: 07/26/2017] [Indexed: 11/19/2022]
Abstract
The fluid mosaic model states that molecules in the plasma membrane can freely undergo lateral diffusion; however, in neurons and glia, specific membrane molecules are concentrated in cellular microdomains to overcome the randomizing effects of free diffusion. This specialized distribution of membrane molecules is crucial for various cell functions; one example is the accumulation of neurotransmitter receptors at the postsynaptic neuronal membrane, which enables efficient synaptic transmission. Quantum dot-single particle tracking (QD-SPT) is a super-resolution imaging technique that uses semiconductor nanocrystal quantum dots as fluorescent probes, and is a powerful tool for analyzing protein and lipid behavior in the plasma membrane. In this article, we review studies implementing QD-SPT in neuroscience research and important data gleaned using this technology. Recent QD-SPT experiments have provided critical insights into the mechanism and physiological relevance of membrane self-organization in neurons and astrocytes in the brain. The mobility of some membrane molecules may become abnormal in cellular models of epilepsy and Alzheimer's disease. Based on these findings, we propose that the behavior of membrane molecules reflects the condition of neurons in pathological disease states.
Collapse
Affiliation(s)
- Hiroko Bannai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
19
|
Biswas J, Gupta S, Verma DK, Singh S. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes. Neuroscience 2017; 356:151-166. [PMID: 28527957 DOI: 10.1016/j.neuroscience.2017.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022]
Abstract
The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells.
Collapse
Affiliation(s)
- Joyshree Biswas
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sonam Gupta
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dinesh Kumar Verma
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sarika Singh
- Toxicology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|