1
|
Zhang Y, Wang C, Cheng S, Xu Y, Gu S, Zhao Y, Yang J, Wang Y. A Neutrophil Extracellular Traps-Related Signature Predicts Clinical Outcomes and Identifies Immune Landscape in Ovarian Cancer. J Cell Mol Med 2024; 28:e70302. [PMID: 39730971 DOI: 10.1111/jcmm.70302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024] Open
Abstract
Ovarian cancer (OvCa) is the most lethal gynaecology malignancies worldwide. Neutrophil extracellular traps (NETs), net-like protein structures produced by activated neutrophils and DNA-histone complexes, have a central role in tumours, though haven't been fully explored in OvCa. We obtained transcriptome data from TCGA-OvCa database (n = 376) as training, ICGC-OvCa database (n = 111) as validation and GTEx database (n = 180) as controls. Through LASSO-COX Regression analysis, we identified an eight-gene signature among 87 NETs-related genes, which was significantly related to poor prognosis in both TCGA-OvCa and ICGC-OvCa cohorts (Log-rank p-value = 0.0003 and 0.0014). Next, we constructed and validated a prognostic nomogram, consist of NETs-related signature and clinical features (C-index = 0.82). We evaluated 22 typical immune cell infiltration through CIBERSORT analysis, which implied upregulation of memory CD4 + T cells, follicular helper T cells and neutrophils in high-risk group. Additionally, we predicted therapy sensitivity through TIDE algorithm, indicating that high NETs-riskscore exhibited more sensitivity towards Sorafenib and less sensitivity towards immunotherapy. We initially reported that RAC2 upregulation was associated with NETs formation and poor prognosis (p-value < 0.05) through IHC analysis of tissue microarrays (n = 125). Conclusively, NETs-related signature was reliable for OvCa prognosis prediction and therapy assessment. Especially, RAC2 was predominantly related to NETs formation, thus providing hints towards anti-tumour mechanism of NETs in OvCa.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Shanshan Cheng
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Yanna Xu
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yaqian Zhao
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Jiani Yang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| | - Yu Wang
- Department of Gynecology, School of Medicine, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Han J, Lyu L. Identification of the biological functions and chemo-therapeutic responses of ITGB superfamily in ovarian cancer. Discov Oncol 2024; 15:198. [PMID: 38814534 PMCID: PMC11139846 DOI: 10.1007/s12672-024-01047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Patients with ovarian cancer (OC) tend to face a poor prognosis due to a lack of typical symptoms and a high rate of recurrence and chemo-resistance. Therefore, identifying representative and reliable biomarkers for early diagnosis and prediction of chemo-therapeutic responses is vital for improving the prognosis of OC. METHODS Expression levels, IHC staining, and subcellular distribution of eight ITGBs were analyzed using The Cancer Genome Atlas (TCGA)-Ovarian Serous Cystadenocarcinoma (OV) database, GEO DataSets, and the HPA website. PrognoScan and Univariate Cox were used for prognostic analysis. TIDE database, TIMER database, and GSCA database were used to analyze the correlation between immune functions and ITGBs. Consensus clustering analysis was performed to subtype OC patients in the TCGA database. LASSO regression was used to construct the predictive model. The Cytoscape software was used for identifying hub genes. The 'pRRophetic' R package was applied to predict chemo-therapeutic responses of ITGBs. RESULTS ITGBs were upregulated in OC tissues except ITGB1 and ITGB3. High expression of ITGBs correlated with an unfavorable prognosis of OC except ITGB2. In OC, there was a strong correlation between immune responses and ITGB2, 6, and 7. In addition, the expression matrix of eight ITGBs divided the TCGA-OV database into two subgroups. Subgroup A showed upregulation of eight ITGBs. The predictive model distinguishes OC patients from favorable prognosis to poor prognosis. Chemo-therapeutic responses showed that ITGBs were able to predict responses of common chemo-therapeutic drugs for patients with OC. CONCLUSIONS This article provides evidence for predicting prognosis, immuno-, and chemo-therapeutic responses of ITGBs in OC and reveals related biological functions of ITGBs in OC.
Collapse
Affiliation(s)
- Jiawen Han
- Department of Nutrition, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Lin Lyu
- Department of Nutrition, Jinshan Hospital, Fudan University, 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
3
|
Xia T, Ye F, Zhao W, Min P, Qi C, Wang Q, Zhao M, Zhang Y, Du J. Comprehensive Analysis of MICALL2 Reveals Its Potential Roles in EGFR Stabilization and Ovarian Cancer Cell Invasion. Int J Mol Sci 2023; 25:518. [PMID: 38203692 PMCID: PMC10778810 DOI: 10.3390/ijms25010518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Molecules interacting with CasL (MICALs) are critical mediators of cell motility that act by cytoskeleton rearrangement. However, the molecular mechanisms underlying the regulation of cancer cell invasion remain elusive. The aim of this study was to investigate the potential role of one member of MICALs, i.e., MICALL2, in the invasion and function of ovarian cancer cells. We showed by bioinformatics analysis that MICALL2 expression was significantly higher in tissues of advanced-stage ovarian cancer and associated with poor overall survival of patients. MICALL2 was strongly correlated with the infiltration of multiple types of immune cells and T-cell exhaustion markers. Moreover, enrichment analyses showed that MICALL2 was involved in the tumor-related matrix degradation pathway. Mechanistically, MMP9 was identified as the target gene of MICALL2 for the regulation of invadopodium formation and SKOV3, HO-8910PM cell invasion. In addition, EGFR-AKT-mTOR signaling was identified as the downstream pathway of MICALL2 in the regulation of MMP9 expression. Furthermore, MICALL2 silencing promoted EGFR degradation; however, this effect was abrogated by treatment with the autophagy inhibitors acadesine and chloroquine diphosphate. Silencing of MICALL2 resulted in a suppressive activity of Rac1 while suppressing Rac1 activation attenuated the pro-EGFR, pro-MMP9, and proinvasive effects induced by the overexpression of MICALL2. Collectively, our results indicated that MICALL2 participated in the process of immune infiltration and invasion by ovarian cancer cells. Moreover, MICALL2 prevented EGFR degradation in a Rac1-dependent manner, consequently leading to EGFR-AKT-mTOR-MMP9 signaling activation and invadopodia-mediated matrix degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (T.X.); (F.Y.); (W.Z.); (P.M.); (C.Q.); (Q.W.); (M.Z.); (Y.Z.)
| |
Collapse
|
4
|
Collier H, Albanese A, Kwok CS, Kou J, Rocha S. Functional crosstalk between chromatin and hypoxia signalling. Cell Signal 2023; 106:110660. [PMID: 36990334 DOI: 10.1016/j.cellsig.2023.110660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Eukaryotic genomes are organised in a structure called chromatin, comprising of DNA and histone proteins. Chromatin is thus a fundamental regulator of gene expression, as it offers storage and protection but also controls accessibility to DNA. Sensing and responding to reductions in oxygen availability (hypoxia) have recognised importance in both physiological and pathological processes in multicellular organisms. One of the main mechanisms controlling these responses is control of gene expression. Recent findings in the field of hypoxia have highlighted how oxygen and chromatin are intricately linked. This review will focus on mechanisms controlling chromatin in hypoxia, including chromatin regulators such as histone modifications and chromatin remodellers. It will also highlight how these are integrated with hypoxia inducible factors and the knowledge gaps that persist.
Collapse
Affiliation(s)
- Harry Collier
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Adam Albanese
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Chun-Sui Kwok
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Jiahua Kou
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom.
| |
Collapse
|
5
|
Shi Y, Zhang C, Wang X, Wang Z, Zhang Y, Liu Z, Wang X, Shi W. Analysis of the Mechanism of GuizhiFuling Wan in Treating Adenomyosis Based on Network Pharmacology Combined with Molecular Docking and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6350257. [PMID: 36065269 PMCID: PMC9440632 DOI: 10.1155/2022/6350257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Background The effect of GuizhiFuling Wan (GFW) on adenomyosis (AM) is definite. This study aimed to explore the mechanism and key therapeutic targets of GFW in treating AM through network pharmacology combined with molecular docking and experimental verification. Materials and Methods In network pharmacology, firstly, the active components of GFW, its drug, and disease targets were screened through several related public databases, and GFW-AM common targets were obtained after the intersection. Then, the biological function (Gene Ontology, GO) and pathway (Kyoto Encyclopedia of Genes and Genomes, KEGG) of GFW in treating AM were enriched and analyzed. Finally, the interaction and binding force between key components and key targets of GFW were verified by molecular docking. In the animal part, the effect of GFW on the expression of matrix metallopeptidase 2 (MMP-2), matrix metallopeptidase 9 (MMP-9), and vascular endothelial growth factor (VEGF) in mice with AM was observed by HE staining, ELISA, and immunohistochemistry. Results In this study, 89 active components of GFW, 102 related targets, and 291 targets of AM were collected. After the intersection, 26 common targets were finally obtained. The key active compounds were baicalein, sitosterol, and β-sitosterol, and the key targets were MMP-2, MMP-9, and VEGF. GO and KEGG enrichment analyses showed that biological processes such as the positive regulation of vascular endothelial migration and signaling pathways such as TNF and HIF-1 were involved in regulating angiogenesis, invasion, and metastasis in AM. The molecular docking results showed that baicalein, β-sitosterol, and stigmasterol had better binding potential with MMP-2, MMP-9, and VEGF. The results of in vivo analysis showed that GFW could decrease the serum content and protein expression of MMP-2, MMP-9, and VEGF in mice with AM. Conclusions GFW could reduce the expression of MMP-2, MMP-9, and VEGF, which might be an essential mechanism for GFW to inhibit the invasion and metastasis of ectopic tissues of AM.
Collapse
Affiliation(s)
- Yaxin Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chengyuan Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zilu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yiran Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Wei Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| |
Collapse
|
6
|
Qiu P, Lin X, Deng G. [Talin1 is highly expressed in the fallopian tube and chorionic villi to promote trophoblast invasion in tubal pregnancy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:610-617. [PMID: 35527499 DOI: 10.12122/j.issn.1673-4254.2022.04.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the expression of Talin1 in the fallopian tube and chorionic villi in patients with tubal pregnancy and its role in regulating invasion and migration of trophoblasts. METHODS Immunohistochemistry and Western blotting were used to detect the localization and expression level of Talin1 in the fallopian tube and chorionic villi in patients with tubal pregnancy and in women with normal pregnancy. In the cell experiment, HTR-8/SVneo cells was transfected with Talin1 siRNA and the changes in cell invasion and migration were assessed using scratch assay and Transwell assay. The expressions of MMP-2, MMP-9, N-cadherin and Snail in the transfected cells were detected by qRT-PCR and Western blotting. RESULTS Positive expression of Talin1 was detected in both normal fallopian tube tissues and tissues from women tubal pregnancy, and its expression was localized mainly in the cytoplasm of cilia cells. The expression level of Talin1 was significantly higher in both the fallopian tube and chorionic villi in women with tubal pregnancy than in normal fallopian tube and chorionic villi samples (P < 0.01). In HTR-8/SVneo cells, transfection with Talin1 siRNA significantly inhibited cell invasion (P < 0.01) and migration (P < 0.05), down-regulated the expression of N-cadherin, MMP-2 and Snail (P < 0.05), and up-regulated the expression of MMP-9 in the cells (P < 0.05). CONCLUSION The expression of Talin1 in the fallopian tube and chorionic villi is significantly increased in women with tubal pregnancy, suggesting the association of Talin1-regulated trophoblast cell invasion with the occurrence of tubal pregnancy.
Collapse
Affiliation(s)
- P Qiu
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - X Lin
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - G Deng
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
7
|
Liu Z, Sun J, Li C, Xu L, Liu J. MKL1 regulates hepatocellular carcinoma cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. BMC Cancer 2021; 21:1184. [PMID: 34742274 PMCID: PMC8571910 DOI: 10.1186/s12885-021-08185-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background Histone modification plays essential roles in hepatocellular carcinoma (HCC) pathogenesis, but the regulatory mechanisms remain poorly understood. In this study, we aimed to analyze the roles of Megakaryoblastic leukemia 1 (MKL1) and its regulation of COMPASS (complex of proteins associated with Set1) in HCC cells. Methods MKL1 expression in clinical tissues and cell lines were detected by bioinformatics, qRT-PCR and western blot. MKL1 expression in HCC cells were silenced with siRNA, followed by cell proliferation evaluation via Edu staining and colony formation, migration and invasion using the Transwell system, and apoptosis by Hoechst staining. HCC cell tumorigenesis was assessed by cancer cell line-based xenograft model, combined with H&E staining and IHC assays. Results MKL1 expression was elevated in HCC cells and clinical tissues which was correlated with poor prognosis. MKL1 silencing significantly repressed proliferation, migration, invasion and colony formation but enhanced apoptosis in HepG2 and Huh-7 cells. MKL1 silencing also inhibited COMPASS components and p65 protein expression in HepG2 and Huh-7 cells. HepG2 cell tumorigenesis in nude mice was severely impaired by MKL1 knockdown, resulted into suppressed Ki67 expression and cell proliferation. Conclusion MKL1 promotes HCC pathogenesis by regulating hepatic cell proliferation, migration and apoptosis via the COMPASS complex and NF-κB signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08185-w.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiuzheng Sun
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyou Xu
- Department of Hepatobiliary and Pancreatic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
8
|
Sun P, Lu Q, Li Z, Qin N, Jiang Y, Ma H, Jin G, Yu H, Dai J. Assessment of prognostic prediction models for gastric cancer using genomic and transcriptomic profiles. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
|
10
|
Liu L, Zhao Q, Lin L, Yang G, Yu L, Zhuo L, Yang Y, Xu Y. Myeloid MKL1 Disseminates Cues to Promote Cardiac Hypertrophy in Mice. Front Cell Dev Biol 2021; 9:583492. [PMID: 33898415 PMCID: PMC8063155 DOI: 10.3389/fcell.2021.583492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac hypertrophy is a key pathophysiological process in the heart in response to stress cues. Although taking place in cardiomyocytes, the hypertrophic response is influenced by other cell types, both within the heart and derived from circulation. In the present study we investigated the myeloid-specific role of megakaryocytic leukemia 1 (MKL1) in cardiac hypertrophy. Following transverse aortic constriction (TAC), myeloid MKL1 conditional knockout (MFCKO) mice exhibit an attenuated phenotype of cardiac hypertrophy compared to the WT mice. In accordance, the MFCKO mice were protected from excessive cardiac inflammation and fibrosis as opposed to the WT mice. Conditioned media collected from macrophages enhanced the pro-hypertrophic response in cardiomyocytes exposed to endothelin in an MKL1-dependent manner. Of interest, expression levels of macrophage derived miR-155, known to promote cardiac hypertrophy, were down-regulated in the MFCKO mice compared to the WT mice. MKL1 depletion or inhibition repressed miR-155 expression in macrophages. Mechanistically, MKL1 interacted with NF-κB to activate miR-155 transcription in macrophages. In conclusion, our data suggest that MKL1 may contribute to pathological hypertrophy via regulating macrophage-derived miR-155 transcription.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Department of Pathology, Suzhou Municipal Hospital Affiliated with Nanjing Medical University, Suzhou, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Epigenetic activation of the small GTPase TCL contributes to colorectal cancer cell migration and invasion. Oncogenesis 2020; 9:86. [PMID: 32999272 PMCID: PMC7528090 DOI: 10.1038/s41389-020-00269-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023] Open
Abstract
TC10-like (TCL) is a small GTPase that has been implicated in carcinogenesis. Elevated TCL expression has been observed in many different types of cancers although the underlying epigenetic mechanism is poorly understood. Here we report that TCL up-regulation was associated with high malignancy in both human colorectal cancer biopsy specimens and in cultured colorectal cancer cells. Hypoxia, a pro-metastatic stimulus, up-regulated TCL expression in HT-29 cells. Further studies revealed that myocardin-related transcription factor A (MRTF-A) promoted migration and invasion of HT-29 cells in a TCL-dependent manner. MRTF-A directly bound to the proximal TCL promoter in response to hypoxia to activate TCL transcription. Chromatin immunoprecipitation (ChIP) assay showed that hypoxia stimulation specifically enhanced acetylation of histone H4K16 surrounding the TCL promoter, which was abolished by MRTF-A depletion or inhibition. Mechanistically, MRTF-A interacted with and recruited the H4K16 acetyltransferase hMOF to the TCL promoter to cooperatively regulate TCL transcription. hMOF depletion or inhibition attenuated hypoxia-induced TCL expression and migration/invasion of HT-29 cells. In conclusion, our data identify a novel MRTF-A-hMOF-TCL axis that contributes to colorectal cancer metastasis.
Collapse
|
12
|
Xu W, Song Y, Li K, Zhang B, Zhu X. Quercetin Inhibits Adenomyosis by Attenuating Cell Proliferation, Migration and Invasion of Ectopic Endometrial Stromal Cells. Drug Des Devel Ther 2020; 14:3815-3826. [PMID: 33061289 PMCID: PMC7519414 DOI: 10.2147/dddt.s265066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate the effects of quercetin on proliferation, invasion and migration of endometrial stromal cells (ESCs) from adenomyosis patients. METHODS Primary ectopic ESCs (EESCs) and eutopic ESCs (EuESCs) were obtained and purified from patients undergoing total hysterectomy for adenomyosis and identified by immunocytochemistry staining. The cytotoxicity and inhibition rate were determined by CCK-8 assay to obtain the IC50 value. Cell proliferative, migratory, and invasive abilities were detected by BrdU, wound scratch, transwell assays, respectively. Western blot analysis was employed to explore the effects of quercetin on the expression of MMP-2, MMP-9, Ezrin and Fascin proteins in cells. RESULTS Both EESCs and EuESCs were characterized with strongly positive staining for vimentin and almost negative for cytokeratin. Quercetin inhibited the viability of EESCs and EuESCs in a dose- and time-dependent manner, with an IC50 = 33.00 μM for EuESCs and IC50 = 74.88 μM for EESCs at 72 h. Thus, the final concentrations and action time of quercetin in EuESCs (0, 20, 40, and 80 μM for 72 h) and EESCs (0, 40, 80, and 160 μM for 72 h) were selected. BrdU assay showed that quercetin dose-dependently suppressed the proliferation of EESCs and EuESCs, while the inhibition rate in EESCs was higher. Similarly, administration of quercetin in EESCs and EuESCs significantly decreased the motility and invasiveness in a dose-dependent fashion, with stronger inhibitory effects on EESCs. Finally, Western blot analysis demonstrated that invasion- and migration-related proteins (MMP-2, MMP-9, Erzin, and Fascin) were significantly downregulated with the quercetin concentration increasing. Moreover, the decreased level of these proteins in EESCs under quercetin exposure was greater than that in EuESCs. CONCLUSION Quercetin can inhibit the proliferation of EESCs in adenomyosis and reduce their mobility and invasiveness. These inhibitory effects may be related to the downregulation of MMP-2, MMP-9, Fascin, and Erzin proteins.
Collapse
Affiliation(s)
- Wenbin Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Kehan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| | - Biyun Zhang
- Department of Obstetrics and Gynecology, Cixi Maternity and Child Health Hospital, Ningbo315300, Zhejiang, People’s Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Chen B, Yuan Y, Sun L, Chen J, Yang M, Yin Y, Xu Y. MKL1 Mediates TGF-β Induced RhoJ Transcription to Promote Breast Cancer Cell Migration and Invasion. Front Cell Dev Biol 2020; 8:832. [PMID: 32984327 PMCID: PMC7478007 DOI: 10.3389/fcell.2020.00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Differential regulation of gene transcription contributes to cancer metastasis. We investigated the involvement of a Rho GTPase (RhoJ) in breast cancer metastasis focusing on the mechanism underlying RhoJ trans-activation by pro-metastatic cues. We report that expression of RhoJ was up-regulated in malignant breast cancer cells compared to more benign ones. Higher RhoJ expression was also detected in human breast cancer biopsy specimens of advanced stages. RhoJ depletion attenuated breast cancer cell migration and invasion in vitro and metastasis in vivo. The pro-metastatic stimulus TGF-β activated RhoJ via megakaryocytic leukemia 1 (MKL1). MKL1 interacted with and was recruited by ETS-related gene 1 (ERG1) to the RhoJ promoter to activate transcription. In conclusion, our data delineate a novel transcriptional pathway that contributes to breast cancer metastasis. Targeting the ERG1-MKL1-RhoJ axis may be considered as a reasonable approach to treat malignant breast cancer.
Collapse
Affiliation(s)
- Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, College of Life and Basic Medical Sciences, Soochow University, Suzhou, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Mengzhu Yang
- Department of Oncology, First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysioloy and Laboratory Center for Experimental Medicine, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
14
|
Tang J, Zou J, Zhang X, Fan M, Tian Q, Fu S, Gao S, Fan S. PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics 2020; 21:364. [PMID: 32414326 PMCID: PMC7227319 DOI: 10.1186/s12864-020-6768-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background The computational prediction of methylation levels at single CpG resolution is promising to explore the methylation levels of CpGs uncovered by existing array techniques, especially for the 450 K beadchip array data with huge reserves. General prediction models concentrate on improving the overall prediction accuracy for the bulk of CpG loci while neglecting whether each locus is precisely predicted. This leads to the limited application of the prediction results, especially when performing downstream analysis with high precision requirements. Results Here we reported PretiMeth, a method for constructing precise prediction models for each single CpG locus. PretiMeth used a logistic regression algorithm to build a prediction model for each interested locus. Only one DNA methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted was applied in the model. We found that PretiMeth outperformed other algorithms in the prediction accuracy, and kept robust across platforms and cell types. Furthermore, PretiMeth was applied to The Cancer Genome Atlas data (TCGA), the intensive analysis based on precise prediction results showed that several CpG loci and genes (differentially methylated between the tumor and normal samples) were worthy for further biological validation. Conclusion The precise prediction of single CpG locus is important for both methylation array data expansion and downstream analysis of prediction results. PretiMeth achieved precise modeling for each CpG locus by using only one significant feature, which also suggested that our precise prediction models could be probably used for reference in the probe set design when the DNA methylation beadchip update. PretiMeth is provided as an open source tool via https://github.com/JxTang-bioinformatics/PretiMeth.
Collapse
Affiliation(s)
- Jianxiong Tang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoran Zhang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Mei Fan
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shuyao Fu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shihong Gao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shicai Fan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
15
|
Zhang HM, Li H, Wang GX, Wang J, Xiang Y, Huang Y, Shen C, Dai ZT, Li JP, Zhang TC, Liao XH. MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells. Neoplasia 2020; 22:220-230. [PMID: 32315812 PMCID: PMC7167518 DOI: 10.1016/j.neo.2020.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE miR-5100 participates in the proliferation of lung cancer and pancreatic cancer cells, and participates in the differentiation of osteoblasts. However, the regulation of gastric cancer cells in gastric cancer cells remains unclear. EXPERIMENTAL DESIGN The blood of patients was collected to detect the expression level of miR-5100, and the apoptosis and autophagy levels of cells were detected using western blot, flow cytometry, and confocal. At the same time, in vitro tumor formation experiments in nude mice were used to verify the results of in vitro experiments. RESULTS The expression of miR-5100 is related to the prognosis of gastric cancer, miR-5100 can enhance the apoptosis level of gastric cancer cells and inhibit the occurrence of autophagy by targeting CAAP1. MKL1 can inhibit the apoptosis of gastric cancer cells and promote the occurrence of autophagy by targeting CAAP1. At the same time, MKL1 can also increase the expression of miR-5100. CONCLUSIONS Our research reveals the mechanism by which the MKL1/miR-5100/CAAP1 loop regulates apoptosis and autophagy levels in gastric cancer cells, and miR-5100 is expected to become a new potential target for gastric cancer treatment.
Collapse
Affiliation(s)
- Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Hui Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Gen-Xin Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China.
| | - Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - You Huang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Chao Shen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
16
|
Lu M, Wu Y, Zeng B, Sun J, Li Y, Luo J, Wang L, Yi Z, Li H, Ren G. CircEHMT1 inhibits metastatic potential of breast cancer cells by modulating miR-1233-3p/KLF4/MMP2 axis. Biochem Biophys Res Commun 2020; 526:306-313. [PMID: 32209259 DOI: 10.1016/j.bbrc.2020.03.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 01/09/2023]
Abstract
CircRNA is a kind of covalent head-to-tail looped RNA and plays an important role in tumor development. However, the identification of new potential targetable circRNAs to inhibit cancer development is still a huge challenge. In this study, we found that circEHMT1 inhibited migration and invasion of breast cancer cells. Mechanistically, we identified miR-1233-3p as a target of circEHMT1, and the circEHMT1/miR-1233-3p axis regulated matrix metalloprotease 2 (MMP2) by modulating the transcription factor Krϋppel-like factor 4 (KLF4). In summary, we showed that circEHMT1 has potential as a prognostic factor in breast cancer and played a tumor suppressor role via the circEHMT1/miR-1233-3p/KLF4/MMP2 axis.
Collapse
Affiliation(s)
- Mengqi Lu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yushen Wu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziying Yi
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Chetry M, Song Y, Pan C, Li R, Zhang J, Zhu X. Effects of Galectin-1 on Biological Behavior in Cervical Cancer. J Cancer 2020; 11:1584-1595. [PMID: 32047564 PMCID: PMC6995396 DOI: 10.7150/jca.38538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background: We previously revealed that the expression of galectin-1 (LGALS1) was significantly reduced after neoadjuvant chemotherapy treatment in cervical cancer patients. The objective of this study is to investigate the effects of LGALS1 expression on biological behaviors of cervical cancer cells. Methods: Immunohistochemistry and immunocytochemistry were performed to detect the expression of LGALS1 in cervical cancer tissues and cells (SiHa and C33A). Western blot analysis was performed to evaluate the efficacy of lentivirus-mediated upregulation or downregulation of LGALS1 in cervical cancer cells. Cell viability and proliferation were detected by CCK-8 and BrdU assays, respectively. Annexin V-FITC/PI apoptosis detection kit was employed to measure the apoptosis of cervical cancer cells. Transwell invasion and migration assays were also conducted to explore the invasive and migratory capabilities of cervical cancer cells. The expression of apoptosis- (Bcl-2 and Bax), invasion- (MMP-2 and MMP-9), and migration-related (Fascin and Ezrin) proteins, were detected by Western blot analysis. Xenograft mouse model of cervical cancer was generated to explore whether LGALS1 overexpression could promote tumor growth in vivo. Results: LGALS1 was overexpressed in cervical cancer tissues and cell lines compared to that in normal cervical tissues and epithelium cells. Upregulation of LGALS1 significantly promoted the cell proliferation, inhibited cell apoptosis, and enhanced the migratory and invasive abilities of both SiHa and C33A cells, whereas downregulation of LGALS1 led to the opposite results. The level of Bcl-2, MMP-2, MMP-9, Fascin, and Erzin expression was significantly upregulated in cervical cancer cells with LGALS1 overexpression, while converse results were obtained in LGALS1 knockdown cancer cells. In vivo study also showed that LGALS1 overexpression facilitated tumor growth of cervical cancer cells. Conclusion: Overexpression of LGALS1 significantly promoted and enhanced the aggressive features of cervical cancer both in vitro and in vivo, which may be associated with high expression of Bcl-2, MMP-2, MMP-9, Fascin, and Erzin proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
18
|
Molecular Imaging Probes Based on Matrix Metalloproteinase Inhibitors (MMPIs). Molecules 2019; 24:molecules24162982. [PMID: 31426440 PMCID: PMC6719134 DOI: 10.3390/molecules24162982] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases which are secreted or anchored in the cell membrane and are capable of degrading the multiple components of the extracellular matrix (ECM). MMPs are frequently overexpressed or highly activated in numerous human diseases. Owing to the important role of MMPs in human diseases, many MMP inhibitors (MMPIs) have been developed as novel therapeutics, and some of them have entered clinical trials. However, so far, only one MMPI (doxycycline) has been approved by the FDA. Therefore, the evaluation of the activity of a specific subset of MMPs in human diseases using clinically relevant imaging techniques would be a powerful tool for the early diagnosis and assessment of the efficacy of therapy. In recent years, numerous MMPIs labeled imaging agents have emerged. This article begins by providing an overview of the MMP subfamily and its structure and function. The latest advances in the design of subtype selective MMPIs and their biological evaluation are then summarized. Subsequently, the potential use of MMPI-labeled diagnostic agents in clinical imaging techniques are discussed, including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging (OI). Finally, this article concludes with future perspectives and clinical utility.
Collapse
|
19
|
Yin SJ, Lee JR, Kwak H, Lee BN, Han JW, Hahn MJ, Park YD, Yang JM. Functional study of 14-3-3 protein epsilon (YWHAE) in keratinocytes: microarray integrating bioinformatics approaches. J Biomol Struct Dyn 2019; 38:2633-2649. [DOI: 10.1080/07391102.2019.1637282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, People’s Republic of China
| | - Jae-Rin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyunchang Kwak
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Bit-Na Lee
- Genomic Research Center, EBIOGEN Inc, Seoul, Korea
| | - Ji-Won Han
- Genomic Research Center, EBIOGEN Inc, Seoul, Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, People’s Republic of China
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, People’s Republic of China
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Li F, Guo P, Dong K, Guo P, Wang H, Lv X. Identification of Key Biomarkers and Potential Molecular Mechanisms in Renal Cell Carcinoma by Bioinformatics Analysis. J Comput Biol 2019; 26:1278-1295. [PMID: 31233342 DOI: 10.1089/cmb.2019.0145] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer, caused by renal epithelial cells. RCC remains to be a challenging public health problem worldwide. Metastases that are resistant to radiotherapy and chemotherapy are the major cause of death from cancer. However, the underlying molecular mechanism regulating the metastasis of RCC is poorly known. Publicly available databases of RCC were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using GEO2R analysis, whereas the Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed by Gene Set Enrichment Analysis (GSEA) and Metascape. Protein-protein interaction (PPI) network of DEGs was analyzed by STRING online database, and Cytoscape software was used for visualizing PPI network. Survival analysis of hub genes was conducted using GEPIA online database. The expression levels of hub genes were investigated from The Human Protein Atlas online database and GEPIA online database. Finally, the comparative toxicogenomics database (CTD; http://ctdbase.org) was used to identify hub genes associated with tumor or metastasis. We identified 229 DEGs comprising 135 downregulated genes and 94 upregulated genes. Functional analysis revealed that these DEGs were associates with cell recognition, regulation of immune, negative regulation of adaptive immune response, and other functions. And these DEGs mainly related to P53 signaling pathway, cytokine-cytokine receptor interaction, Natural killer cell mediated cytotoxicity, and other pathways are involved. Ten genes were identified as hub genes through module analyses in the PPI network. Finally, survival analysis of 10 hub genes was conducted, which showed that the MMP2 (matrix metallo peptidase 2), DCN, COL4A1, CASR (calcium sensing receptor), GPR4 (G protein-coupled receptor 4), UTS2 (urotensin 2), and LDLR (low density lipoprotein receptor) genes were significant for survival. In this study, the DEGs between RCC and metastatic RCC were analyzed, which assist us in systematically understanding the pathogeny underlying metastasis of RCC. The MMP2, DCN, COL4A1, CASR, GPR4, UTS2, and LDLR genes might be used as potential targets to improve diagnosis and immunotherapy biomarkers for RCC.
Collapse
Affiliation(s)
- Feng Li
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Peiyuan Guo
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, P.R. China
| | - Keqin Dong
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, P.R. China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Haoyuan Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, P.R. China
| | - Xianqiang Lv
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
21
|
Liu L, Hong W, Li M, Ren H, Wang J, Xu H, Shi X, Xu Y. A Cross Talk Between BRG1 and Males Absent on the First Contributes to Reactive Oxygen Species Production in a Mouse Model of Nonalcoholic Steatohepatitis. Antioxid Redox Signal 2019; 30:1539-1552. [PMID: 29963902 DOI: 10.1089/ars.2016.6822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Accumulation of reactive oxygen species (ROS) in hepatocytes in response to excessive nutrients and the ensuing liver damages caused by ROS constitute a key pathophysiological event in nonalcoholic steatohepatitis (NASH). In the present study, we investigated the epigenetic mechanism underlying ROS production in NASH pathogenesis. Results: NASH was induced by feeding the mice with a methionine-and-choline-deficient (MCD) diet for 4 weeks. Compared with the control mice (wild type [WT]), mice with hepatocyte-specific deletion of Brg1 (HepcKO), a core component of the mammalian chromatin remodeling complex, developed a less severe form of NASH when fed on the MCD diet. Importantly, ROS levels were attenuated in HepcKO mice as opposed to WT mice. Brahma-related gene 1 (Brg1) deficiency downregulated the transcription of NADPH oxidases (NOX1, NOX2, and NOX4) both in vivo and in vitro. Mechanistically, Brg1 deletion rendered a more repressive chromatin structure surrounding the NOX promoters as characterized by reduced levels of acetylated histones. In addition, Brg1 interacted with the histone H4K16 acetyltransferase males absent on the first (MOF) to activate NOX transcription. MOF knockdown by small interfering RNA or pharmaceutical inhibition by MG149 suppressed NOX transcription and ameliorated ROS levels. Innovation: Our data highlight a novel epigenetic mechanism through which Brg1 and MOF cooperate to regulate ROS production in hepatocytes in response to pro-NASH stimuli. Conclusion: A cross talk between Brg1 and MOF epigenetically activates NOX transcription and elevates ROS synthesis contributing to NASH pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Su H, Lin Z, Peng W, Hu Z. Identification of potential biomarkers of lung adenocarcinoma brain metastases via microarray analysis of cDNA expression profiles. Oncol Lett 2018; 17:2228-2236. [PMID: 30675288 PMCID: PMC6341808 DOI: 10.3892/ol.2018.9829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Brain metastases originating from lung adenocarcinoma (LAD) occur frequently. The aim of the current study was to assess potential biomarkers for the prognosis of lung adenocarcinoma brain metastasis (LAD-BM) through the analysis of gene expression microarrays. The current study downloaded two gene expression datasets, GSE14108 and GSE10245, from the Gene Expression Omnibus database. From GSE14108 and GSE10245, 19 LAD-BM samples and 40 primary LAD samples were selected for analysis. To identify the differentially expressed genes (DEGs), the current study compared the two sample groups, using the limma R package. Subsequently, pathway enrichment analysis was conducted using the Cluster Profiler R package, and the construction of the protein-protein interaction (PPI) network was executed utilizing the Search Tool for the Retrieval of Interacting Genes database. The microRNA-target network was built using the TargetScore R package. Then, these networks were established and visualized using Cytoscape software. An array of 463 DEGs was identified in the LAD-BM samples, including 256 upregulated and 207 downregulated genes. Based on functional term enrichment analysis using the Gene Ontology database and signaling pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes database, it was identified that the overlapping DEGs were primarily involved in chemokine-associated signal transduction, which may mediate lung cancer cell metastasis to the brain. Chemokine ligand 2, lysozyme, matrix metalloproteinase-2 (MMP-2), lysyl oxidase (LOX) and granzyme B were identified as potential biomarkers according to a topological analysis of the PPI networks. Two notable nodes, MMP-2 and LOX, appeared in the PPI network and were key points in the microRNA-target network, as they were regulated by hsa-let-7d. Many DEGs and microRNAs were regarded as prognostic biomarkers for lung adenocarcinoma metastasis in the current study. These DEGs were primarily associated with chemokine-mediated signaling pathways. In addition, MMP-2 and LOX were predicted to be targets of hsa-let-7d.
Collapse
Affiliation(s)
- Haiyang Su
- Department of Neurosurgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, P.R. China
| | - Zhenyang Lin
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Weicheng Peng
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Zhiqiang Hu
- Department of Neurosurgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, P.R. China
| |
Collapse
|
23
|
Guo XB, Huang B, Pan YH, Su SG, Li Y. ESCO2 inhibits tumor metastasis via transcriptionally repressing MMP2 in colorectal cancer. Cancer Manag Res 2018; 10:6157-6166. [PMID: 30538563 PMCID: PMC6257866 DOI: 10.2147/cmar.s181265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Establishment of cohesion 1 homolog 2 (ESCO2) plays important roles in the regulation of cohesion and genomic stability and has been implicated in human cancers. Yet, its clinical significance and biological function in colorectal cancer (CRC) are unknown. Methods The expression of ESCO2 was examined by quantitative real-time PCR, Western blot, and immunohistochemistry. The role of ESCO2 in the tumor metastasis of CRC and the related mechanisms were investigated using in vitro and in vivo models. Results In this study, we show that low expression of ESCO2 in CRC was closely correlated with lymphatic and distant metastasis. Patients with low ESCO2 expression experienced shorter overall survival and disease-free survival in two independent cohorts containing a total of 587 CRC cases. ESCO2 overexpression suppressed, whereas ESCO2 knockdown promoted cell migration in vitro and tumor metastasis in vivo via modulation of epithelial–mesenchymal transition (EMT) process. Mechanistically, ESCO2 inhibited the transcriptional activity of MMP2 promoter to downregulate its expression. Reexpression of MMP2 partially attenuated the ESCO2-mediated malignant phenotypes. Conclusion Collectively, our data suggest that ESCO2 serves as a potential prognostic factor and exerts antimetastatic activity in CRC.
Collapse
Affiliation(s)
- Xiong-Bo Guo
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Huang
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China,
| | - Yan Li
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China,
| |
Collapse
|
24
|
Hong F, Li Y, Ni H, Li J. Downregulation of ribophorin II suppresses tumor growth, migration, and invasion of nasopharyngeal carcinoma. Onco Targets Ther 2018; 11:3485-3494. [PMID: 29942140 PMCID: PMC6007195 DOI: 10.2147/ott.s158355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background It has been reported that ribophorin II (RPN2) expression is increased in many cancers, but the role of RPN2 in nasopharyngeal carcinoma (NPC) remains unclear. Patients and methods This study found that the expression of RPN2 is increased dramatically in NPC tissues of patients compared with that in the adjacent normal tissues. This study attempted at understanding the effect of siRNA-RPN2 treatment on the migration and invasion of NPC cell lines CNE2 and HNE1. Results RT-PCR and Western blotting showed that RPN2 was highly expressed in CNE2 and HNE1 cells. siRNA-RPN2 treatment significantly inhibited cell viability at 24 and 48 h compared with the control group. Results of the transwell assay showed that, compared to the control groups, migration and invasion of the cells treated with siRNA-RPN2 decreased markedly. In addition, compared to the control groups, caspase-3, caspase-9, and E-cadherin expression levels increased and MMP 2 expression decreased significantly in the siRNA-RPN2-treated group. Phosphorylation of AKT and PI3K was also inhibited after siRNA-RPN2 treatment. Conclusion siRNA-RPN2 can effectively inhibit the invasion and migration of human NPC cells via AKT/PI3K signaling. This can serve as a novel strategy for NPC treatment.
Collapse
Affiliation(s)
- Feilong Hong
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yong Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Haifeng Ni
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| | - Jing Li
- Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, China
| |
Collapse
|
25
|
Zhang X, Chen J, Sun L, Xu Y. SIRT1 deacetylates KLF4 to activate Claudin-5 transcription in ovarian cancer cells. J Cell Biochem 2017; 119:2418-2426. [PMID: 28888043 DOI: 10.1002/jcb.26404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022]
Abstract
Malignant cancers are distinguished from more benign forms of cancers by enhanced ability to disseminate. A number of factors aid the migration and invasion of malignant cancer cells. Epithelial-to-mesenchymal transition (EMT), which greatly facilitates the dissemination of cancer cells, is characterized by the loss of epithelial markers and the acquisition of mesenchymal markers thereby rendering the cells more migratory and invasive. We have previously shown that the class III lysine deacetylase SIRT1 plays a critical role curbing the metastasis of ovarian cancer cells partly by blocking EMT. Here we investigated the mechanism by which SIRT1 regulates the transcription of Claudin 5 (CLDN5), an epithelial marker gene, in ovarian cancer cells. SIRT1 activation or over-expression up-regulated CLDN5 expression while SIRT1 inhibition or depletion down-regulated CLDN5 expression. SIRT1 interacted with and deacetylated Kruppel-like factor 4 (KLF4), a known transcriptional activator for CLDN5. Deacetylation by SIRT1 promoted nuclear accumulation of KLF4 and enhanced the binding of KLF4 to the CLDN5 promoter in the nucleus. SIRT1-mediated up-regulation of CLDN5 was abrogated in the absence of KLF4. In accordance, KLF4 depletion by siRNA rendered ovarian cancer cells more migratory and invasive despite of SIRT1 activation or over-expression. In conclusion, our data suggest that SIRT1 activates CLDN5 transcription by deacetylating and potentiating KLF4.
Collapse
Affiliation(s)
- Xinjian Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi College of Medicine, Jiangnan University, Nanjing, Jiangsu, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, Soochow University, Suzhou, Jiangsu, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Liu K, Gu S, Liu X, Sun Q, Wang Y, Meng J, Xu Z. The MMP2 rs243865 polymorphism increases the risk of prostate cancer: A meta-analysis. Oncotarget 2017; 8:72933-72938. [PMID: 29069837 PMCID: PMC5641180 DOI: 10.18632/oncotarget.18014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a common cancer in men. However, the association between the rs243865 single-nucleotide polymorphisms in the matrix metalloproteinase 2 gene (MMP2) and the risk for prostate cancer is inconclusive. We searched the PubMed, EMBASE, Cochrane Library, and the Chinese CNKI and WANFANG databases for the relevant literature. Data were extracted and pooled results were estimated from odds ratios (OR) with 95% confidence intervals (95% CIs). The quality of included studies was assessed, and publication bias of all included studies was examined. A total five studies involving 1895 patients with prostate cancer and 1918 controls were included. There was a significant association between rs243865 polymorphisms and higher risk of prostate cancer in the co-dominant model, dominant model, and allele model (CC vs. CT+TT, OR: 1.60, 95% CI: 1.22–2.11, P = 0.001; CC vs. CT, OR: 1.80, 95% CI: 1.34–2.42, P < 0.001; C vs. T, OR: 1.32, 95% CI: 1.05–1.66, P = 0.016, respectively). However, there was no significant difference between the co-recessive model and recessive model. Our meta-analysis results suggest that MMP2 rs243865 polymorphisms are significantly associated with higher risk of prostate cancer.
Collapse
Affiliation(s)
- Kun Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| | - Shuo Gu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| | - Xuzhong Liu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| | - Qing Sun
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| | - Yunyan Wang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| | - Junsong Meng
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| | - Zongyuan Xu
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China, 223300
| |
Collapse
|