1
|
Un Nisa M, Gillani SQ, Nabi N, Sarwar Z, Reshi I, Bhat SA, Andrabi S. Lipin-1 stability and its adipogenesis functions are regulated in contrasting ways by AKT1 and LKB1. J Cell Commun Signal 2023; 17:689-704. [PMID: 36380131 PMCID: PMC10409976 DOI: 10.1007/s12079-022-00708-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Lipin-1 is a protein that plays a critical role in many cellular functions. At molecular level, it acts as a phosphatidic acid phosphohydrolase and a transcriptional coactivator. The functions of lipin-1 are largely dependent upon its subcellular localization, post-translational modifications like phosphorylation and acetylation, and also on its interaction with other proteins such as 14-3-3. However, the kinases and phosphatases that are responsible for these post translational modifications are not entirely known. Using bioinformatics and other biochemical approaches, we demonstrate lipin-1 as a novel target for AKT1 and LKB1. While AKT1 stabilizes lipin-1, LKB1 causes its degradation. Interestingly, our findings further show that lipin-1 enhances AKT1 activity as can be seen by increased phosphorylation of the substrates of AKT1. Taken together, our results suggest that lipin-1 plays an important role in the regulation of PI3K-AKT-mTOR pathway, which is dysregulated in majority of cancers. Therefore, understating the role of lipin-1 may provide new and important insights into the regulation and functions of the PI3K-mTOR pathway, which is one of the major targets for anti-cancer drug development strategies.
Collapse
Affiliation(s)
- Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Irfana Reshi
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Sameer Ahmed Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
2
|
Wang Z, Zeng Z, Starkuviene V, Erfle H, Kan K, Zhang J, Gunkel M, Sticht C, Rahbari N, Keese M. MicroRNAs Influence the Migratory Ability of Human Umbilical Vein Endothelial Cells. Genes (Basel) 2022; 13:genes13040640. [PMID: 35456446 PMCID: PMC9029696 DOI: 10.3390/genes13040640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
To identify miRNAs that are involved in cell migration in human umbilical vein endothelial cells (HUVECs), we employed RNA sequencing under high glucose incubation and text mining within the databases miRWalk and TargetScanHuman using 83 genes that regulate HUVECs migration. From both databases, 307 predicted miRNAs were retrieved. Differentially expressed miRNAs were determined by exposing HUVECs to high glucose stimulation, which significantly inhibited the migratory ability of HUVECs as compared to cells cultured in normal glucose. A total of 35 miRNAs were found as differently expressed miRNAs in miRNA sequencing, and 4 miRNAs, namely miR-21-3p, miR-107, miR-143-3p, and miR-106b-5p, were identified as overlapping hits. These were subjected to hub gene analysis and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG), identifing 71 pathways which were influenced by all four miRNAs. The influence of all four miRNAs on HUVEC migration was phenomorphologically confirmed. miR21 and miR107 promoted migration in HUVECs while miR106b and miR143 inhibited migration. Pathway analysis also revealed eight shared pathways between the four miRNAs. Protein–protein interaction (PPI) network analysis was then performed to predict the functionality of interacting genes or proteins. This revealed six hub genes which could firstly be predicted to be related to HUVEC migration.
Collapse
Affiliation(s)
- Zhaohui Wang
- Vascular Surgery, University Clinic Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (Z.W.); (Z.Z.); (K.K.); (J.Z.); (N.R.)
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
| | - Ziwei Zeng
- Vascular Surgery, University Clinic Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (Z.W.); (Z.Z.); (K.K.); (J.Z.); (N.R.)
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
- Institute of Biosciences, Vilnius University Life Sciences Center, 10257 Vilnius, Lithuania
- Correspondence: (V.S.); (M.K.)
| | - Holger Erfle
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
| | - Kejia Kan
- Vascular Surgery, University Clinic Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (Z.W.); (Z.Z.); (K.K.); (J.Z.); (N.R.)
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
| | - Jian Zhang
- Vascular Surgery, University Clinic Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (Z.W.); (Z.Z.); (K.K.); (J.Z.); (N.R.)
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
| | - Manuel Gunkel
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany; (H.E.); (M.G.)
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Nuh Rahbari
- Vascular Surgery, University Clinic Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (Z.W.); (Z.Z.); (K.K.); (J.Z.); (N.R.)
| | - Michael Keese
- Vascular Surgery, University Clinic Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (Z.W.); (Z.Z.); (K.K.); (J.Z.); (N.R.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Correspondence: (V.S.); (M.K.)
| |
Collapse
|
3
|
Abstract
The intimate association between obesity and type II diabetes urges for a deeper understanding of adipocyte function. We and others have previously delineated a role for the tumor suppressor p53 in adipocyte biology. Here, we show that mice haploinsufficient for MDM2, a key regulator of p53, in their adipose stores suffer from overt obesity, glucose intolerance, and hepatic steatosis. These mice had decreased levels of circulating palmitoleic acid [non-esterified fatty acid (NEFA) 16:1] concomitant with impaired visceral adipose tissue expression of Scd1 and Ffar4. A similar decrease in Scd and Ffar4 expression was found in in vitro differentiated adipocytes with perturbed MDM2 expression. Lowered MDM2 levels led to nuclear exclusion of the transcriptional cofactors, MORC2 and LIPIN1, and thereby possibly hampered adipocyte function by antagonizing LIPIN1-mediated PPARγ coactivation. Collectively, these data argue for a hitherto unknown interplay between MDM2 and MORC2/LIPIN1 involved in balancing adipocyte function.
Collapse
|
4
|
Hsu WH, Huang YH, Chen PR, Hsieh LS. NLIP and HAD-like Domains of Pah1 and Lipin 1 Phosphatidate Phosphatases Are Essential for Their Catalytic Activities. Molecules 2021; 26:molecules26185470. [PMID: 34576941 PMCID: PMC8470223 DOI: 10.3390/molecules26185470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae Pah1 phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol, controlling phospholipids and triacylglycerol metabolisms. Pah1 and human Lipin 1 are intrinsically disordered proteins with 56% and 43% unfolded regions, respectively. Truncation analysis of the conserved and non-conserved regions showed that N- and C-conserved regions are essential for the catalytic activity of Pah1. PAP activities can be detected in the conserved N-terminal Lipin (NLIP) domain and C-terminal Lipin (CLIP)/haloacid dehalogenase (HAD)-like domain of Pah1 and Lipin 1, suggesting that the evolutionarily conserved domains are essential for the catalytic activity. The removal of disordered hydrophilic regions drastically reduced the protein solubility of Pah1. Thioredoxin is an efficient fusion protein for production of soluble NLIP–HAD recombinant proteins in Escherichia coli.
Collapse
|
5
|
Serranito B, Taurisson-Mouret D, Harkat S, Laoun A, Ouchene-Khelifi NA, Pompanon F, Benjelloun B, Cecchi G, Thevenon S, Lenstra JA, Da Silva A. Search for Selection Signatures Related to Trypanosomosis Tolerance in African Goats. Front Genet 2021; 12:715732. [PMID: 34413881 PMCID: PMC8369930 DOI: 10.3389/fgene.2021.715732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Livestock is heavily affected by trypanosomosis in Africa. Through strong selective pressure, several African indigenous breeds of cattle and small ruminants have acquired varying degrees of tolerance against this disease. In this study, we combined LFMM and PCAdapt for analyzing two datasets of goats from West-Central Africa and East Africa, respectively, both comprising breeds with different assumed levels of trypanotolerance. The objectives were (i) to identify molecular signatures of selection related to trypanotolerance; and (ii) to guide an optimal sampling for subsequent studies. From 33 identified signatures, 18 had been detected previously in the literature as being mainly associated with climatic adaptations. The most plausible signatures of trypanotolerance indicate the genes DIS3L2, COPS7B, PD5A, UBE2K, and UBR1. The last gene is of particular interest since previous literature has already identified E3-ubiquitin ligases as playing a decisive role in the immune response. For following-up on these findings, the West-Central African area appears particularly relevant because of (i) a clear parasitic load gradient related to a humidity gradient, and (ii) still restricted admixture levels between goat breeds. This study illustrates the importance of protecting local breeds, which have retained unique allelic combinations conferring their remarkable adaptations.
Collapse
Affiliation(s)
- Bruno Serranito
- Museum National d’Histoire Naturelle, CRESCO, Dinard, France
- University of Limoges, PEREINE, E2LIM, Limoges, France
| | | | - Sahraoui Harkat
- Science Veterinary Institute, University of Blida, Blida, Algeria
| | | | | | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Badr Benjelloun
- National Institute of Agronomic Research, Regional Centre of Agronomic Research, Beni-Mellal, Morocco
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Sophie Thevenon
- CIRAD, UMR INTERTRYP, Montpellier, France
- INTERTRYP, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Anne Da Silva
- University of Limoges, PEREINE, E2LIM, Limoges, France
| |
Collapse
|
6
|
Okuno H, Okuzono H, Hayase A, Kumagai F, Tanii S, Hino N, Okada Y, Tachibana K, Doi T, Ishimoto K. Lipin-1 is a novel substrate of protein phosphatase PGAM5. Biochem Biophys Res Commun 2019; 509:886-891. [PMID: 30642635 DOI: 10.1016/j.bbrc.2019.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Lipin-1 has multiple functions that regulate lipid and energy metabolism according to its subcellular localization. The subcellular localization of Lipin-1 is determined by kinase-dependent phosphorylation; however, the phosphatase that dephosphorylates and inactivates Lipin-1 has remained elusive. Using an immunoprecipitation and LC-MS/MS approach we have identified phosphoglycerate mutase family member 5 (PGAM5), a serine/threonine specific protein phosphatase, as a regulator of Lipin-1 activity. Treatment of human hepatocellular carcinoma cells with carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which activates endogenous PGAM5, promoted dephosphorylation and nuclear accumulation of Lipin-1. Our findings further elucidate the molecular mechanisms that regulate Lipin-1.
Collapse
Affiliation(s)
- Hiroko Okuno
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruna Okuzono
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayaka Hayase
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiko Kumagai
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Tanii
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobumasa Hino
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiaki Okada
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Ishimoto
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|