1
|
Skalny AV, Aschner M, Santamaria A, Filippini T, Gritsenko VA, Tizabi Y, Zhang F, Guo X, Rocha JBT, Tinkov AA. The Role of Gut Microbiota in the Neuroprotective Effects of Selenium in Alzheimer's Disease. Mol Neurobiol 2025; 62:1675-1692. [PMID: 39012446 DOI: 10.1007/s12035-024-04343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aβ formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aβ and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aβ formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aβ accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School, University of Modena and Reggio Emilia, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Viktor A Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, Health Science Center, School of Public Health, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an 710061, China
| | - Joao B T Rocha
- Departamento de Bioquímica E Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
2
|
Shim HB, Lee H, Cho HY, Jo YH, Tarrago L, Kim H, Gladyshev VN, Lee BC. Development and Optimization of a Redox Enzyme-Based Fluorescence Biosensor for the Identification of MsrB1 Inhibitors. Antioxidants (Basel) 2024; 13:1348. [PMID: 39594490 PMCID: PMC11591284 DOI: 10.3390/antiox13111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain. This protein-based biosensor, named RIYsense, efficiently measures protein methionine sulfoxide reduction by ratiometric fluorescence increase. We used it for high-throughput screening of potential MsrB1 inhibitors among 6868 compounds. A total of 192 compounds were selected based on their ability to reduce relative fluorescence intensity by more than 50% compared to the control. Then, we used molecular docking simulations of the compound on MsrB1, affinity assays, and MsrB1 activity measurement to identify compounds with reliable and strong inhibitory effects. Two compounds were selected as MsrB1 inhibitors: 4-[5-(4-ethylphenyl)-3-(4-hydroxyphenyl)-3,4-dihydropyrazol-2-yl]benzenesulfonamide and 6-chloro-10-(4-ethylphenyl)pyrimido[4,5-b]quinoline-2,4-dione. They are heterocyclic, polyaromatic compounds with a substituted phenyl moiety interacting with the MsrB1 active site, as revealed by docking simulation. These compounds were found to decrease the expression of anti-inflammatory cytokines such as IL-10 and IL-1rn, leading to auricular skin swelling and increased thickness in an ear edema model, effectively mimicking the effects observed in MsrB1 knockout mice. In summary, using a novel redox protein-based fluorescence biosensor, we identified potential MsrB1 inhibitors that can regulate the inflammatory response, particularly by influencing the expression of anti-inflammatory cytokines. These compounds are promising tools for understanding MsrB1's role during inflammation and eventually controlling inflammation in therapeutic approaches.
Collapse
Affiliation(s)
- Hyun Bo Shim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Hyunjeong Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
- College of Engineering, Institute of Green Manufacturing Research Center, Korea University, Seoul 02841, Republic of Korea
- GERONMED, Co., Ltd., Hoegi-ro 117-3, Seoulbiohub, Research Building, 5F, 504, Seoul 02455, Republic of Korea
| | - Hwa Yeon Cho
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Young Ho Jo
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Lionel Tarrago
- French National Institute for Agriculture, Food, and Environment (INRAE), Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), 13385 Marseille, France;
| | - Hyunggee Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
- GERONMED, Co., Ltd., Hoegi-ro 117-3, Seoulbiohub, Research Building, 5F, 504, Seoul 02455, Republic of Korea
| |
Collapse
|
3
|
Tarrago L, Kaya A, Kim HY, Manta B, Lee BC, Gladyshev VN. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med 2022; 191:228-240. [PMID: 36084791 DOI: 10.1016/j.freeradbiomed.2022.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.
Collapse
Affiliation(s)
- Lionel Tarrago
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bruno Manta
- Laboratorio de Genomica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, 11440, Montevideo, Uruguay; Catedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Las Heras 1925, 11600, Montevideo, Uruguay
| | - Byung-Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
4
|
The Function of Selenium in Central Nervous System: Lessons from MsrB1 Knockout Mouse Models. Molecules 2021; 26:molecules26051372. [PMID: 33806413 PMCID: PMC7961861 DOI: 10.3390/molecules26051372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
MsrB1 used to be named selenoprotein R, for it was first identified as a selenocysteine containing protein by searching for the selenocysteine insert sequence (SECIS) in the human genome. Later, it was found that MsrB1 is homologous to PilB in Neisseria gonorrhoeae, which is a methionine sulfoxide reductase (Msr), specifically reducing L-methionine sulfoxide (L-Met-O) in proteins. In humans and mice, four members constitute the Msr family, which are MsrA, MsrB1, MsrB2, and MsrB3. MsrA can reduce free or protein-containing L-Met-O (S), whereas MsrBs can only function on the L-Met-O (R) epimer in proteins. Though there are isomerases existent that could transfer L-Met-O (S) to L-Met-O (R) and vice-versa, the loss of Msr individually results in different phenotypes in mice models. These observations indicate that the function of one Msr cannot be totally complemented by another. Among the mammalian Msrs, MsrB1 is the only selenocysteine-containing protein, and we recently found that loss of MsrB1 perturbs the synaptic plasticity in mice, along with the astrogliosis in their brains. In this review, we summarized the effects resulting from Msr deficiency and the bioactivity of selenium in the central nervous system, especially those that we learned from the MsrB1 knockout mouse model. We hope it will be helpful in better understanding how the trace element selenium participates in the reduction of L-Met-O and becomes involved in neurobiology.
Collapse
|
5
|
Loss of MsrB1 perturbs spatial learning and long-term potentiation/long-term depression in mice. Neurobiol Learn Mem 2019; 166:107104. [PMID: 31672630 DOI: 10.1016/j.nlm.2019.107104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022]
Abstract
MsrB1 belongs to the methionine sulfoxide reductase family, it is also known as selenoprotein R for the sake of possessing a selenocysteine residue. It has been reported that MsrB1 could interact with actin, TRPM6, clusterin, and amyloid-beta in vitro. Thus, we presumed that MsrB1 may play an important role in central nervous system. To examine whether MsrB1 knockout has any effects on brain development or learning behavior, we carried out histological study on brains of MsrB1 deficient mice, and further tested spatial learning ability and long-term synaptic plasticity of these mice by using Morris water maze and electrophysiological methods. It was observed that loss of MsrB1 did not perturb the overall development of central nervous system except for the astrogliosis in hippocampus, however, it led mice to be incapable in spatial learning and severe impairments in LTP/LTD expression in CA1 of brain slices, along with the down-regulation of the synaptic proteins including PSD95, SYP, GluN2A and GluN2B, as well as the dramatic decrease of CaMKIIs phosphorylation at 286(287) compared with wild type mice. Taken together, these results suggest that MsrB1 is essential for mice spatial learning and LTP/LTD induction, and the MsrB1 related redox homeostasis may be involved in regulating the phosphorylation of CaMKIIs.
Collapse
|
6
|
Arias-Borrego A, Callejón-Leblic B, Calatayud M, Gómez-Ariza JL, Collado MC, García-Barrera T. Insights into cancer and neurodegenerative diseases through selenoproteins and the connection with gut microbiota - current analytical methodologies. Expert Rev Proteomics 2019; 16:805-814. [PMID: 31482748 DOI: 10.1080/14789450.2019.1664292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Selenium plays many key roles in health especially in connection with cancer and neurodegenerative diseases. However, it needs to be appreciated that the essentiality/toxicity of selenium depends on both, a narrow range of concentration and the chemical specie involved. In this context, selenoproteins are essential biomolecules against these disorders, mainly due to its antioxidant action. To this end, analytical methodologies may allow identifying and quantifying individual selenospecies in human biofluids and tissues. Areas covered: This review focus on the role of selenoproteins in medicine, with special emphasis in cancer and neurodegenerative diseases, considering the possible link with gut microbiota. In particular, this article reviews the analytical techniques and procedures recently developed for the absolute quantification of selenoproteins and selenometabolites in human biofluids and tissues. Expert commentary: The beneficial role of selenium in human health has been extensively studied and reviewed. However, several challenges remain unsolved as discussed in this article: (i) speciation of selenium (especially selenoproteins) in cancer and neurodegenerative disease patients; (ii) supplementation of selenium in humans using functional foods and nutraceuticals; (iii) the link between selenium and selenoproteins expression and the gut microbiota and (iv) analytical methods and pitfalls for the absolute quantification of selenoproteins and selenometabolites.
Collapse
Affiliation(s)
- Ana Arias-Borrego
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Belén Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Marta Calatayud
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Food Biotechnology , Paterna , Valencia , Spain.,Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent , Belgium
| | - José Luis Gómez-Ariza
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Food Biotechnology , Paterna , Valencia , Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| |
Collapse
|
7
|
Methionine in Proteins: It's Not Just for Protein Initiation Anymore. Neurochem Res 2018; 44:247-257. [PMID: 29327308 DOI: 10.1007/s11064-017-2460-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022]
Abstract
Methionine in proteins is often thought to be a generic hydrophobic residue, functionally replaceable with another hydrophobic residue such as valine or leucine. This is not the case, and the reason is that methionine contains sulfur that confers special properties on methionine. The sulfur can be oxidized, converting methionine to methionine sulfoxide, and ubiquitous methionine sulfoxide reductases can reduce the sulfoxide back to methionine. This redox cycle enables methionine residues to provide a catalytically efficient antioxidant defense by reacting with oxidizing species. The cycle also constitutes a reversible post-translational covalent modification analogous to phosphorylation. As with phosphorylation, enzymatically-mediated oxidation and reduction of specific methionine residues functions as a regulatory process in the cell. Methionine residues also form bonds with aromatic residues that contribute significantly to protein stability. Given these important functions, alteration of the methionine-methionine sulfoxide balance in proteins has been correlated with disease processes, including cardiovascular and neurodegenerative diseases. Methionine isn't just for protein initiation.
Collapse
|