1
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
2
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
4
|
Osteil P, Studdert JB, Tam PPL. Grafting of Epiblast Stem Cell into the Epiblast and Whole-Embryo Imaging to Unveil Lineage Competence. Methods Mol Biol 2022; 2490:269-279. [PMID: 35486252 DOI: 10.1007/978-1-0716-2281-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here we describe a method to engraft epiblast stem cells (EpiSC) into the epiblast of gastrulation-stage mouse embryo to test the lineage propensity acquired by the EpiSCs during in vitro culture under different signaling conditions. After dissection and grafting, the recipient embryos can be grown in whole-embryo culture for up to 48 h and the contribution of the EpiSC-derived cells to tissues in the recipient embryo is assessed by light sheet 3D microscopy.
Collapse
Affiliation(s)
- Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia.
- Swiss Cancer Research Institute (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Joshua B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- Cellular Cancer Therapeutics Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells†. Biol Reprod 2021; 105:52-63. [PMID: 33899086 DOI: 10.1093/biolre/ioab075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
The WNT signaling system plays an important but paradoxical role in the regulation of pluripotency. In the cow, IWR-1, which inhibits canonical WNT activation and has WNT-independent actions, promotes the derivation of primed pluripotent embryonic stem cells from the blastocyst. Here, we describe a series of experiments to determine whether derivation of embryonic stem cells could be generated by replacing IWR-1 with other inhibitors of WNT signaling. Results confirm the importance of inhibition of canonical WNT signaling for the establishment of pluripotent embryonic stem cells in cattle and indicate that the actions of IWR-1 can be mimicked by the WNT secretion inhibitor IWP2 but not by the tankyrase inhibitor XAV939 or WNT inhibitory protein dickkopf 1. The role of Janus kinase-mediated signaling pathways for the maintenance of pluripotency of embryonic stem cells was also evaluated. Maintenance of pluripotency of embryonic stem cells lines was blocked by a broad inhibitor of Janus kinase, even though the cells did not express phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Further studies with blastocysts indicated that IWR-1 blocks the activation of pSTAT3. A likely explanation is that IWR-1 blocks differentiation of embryonic stem cells into a pSTAT3+ lineage. In conclusion, results presented here indicate the importance of inhibition of WNT signaling for the derivation of pluripotent bovine embryonic stem cells, the role of Janus kinase signaling for maintenance of pluripotency, and the participation of IWR-1 in the inhibition of activation of STAT3.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thiago F Amaral
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - Delia A Soto
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Surawich Jeensuk
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Paula Tríbulo
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Xiao L, Shan Y, Ma L, Dunk C, Yu Y, Wei Y. Tuning FOXD3 expression dose-dependently balances human embryonic stem cells between pluripotency and meso-endoderm fates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118531. [PMID: 31415841 DOI: 10.1016/j.bbamcr.2019.118531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Forkhead box D3 (FOXD3) is a key transcription factor maintaining pluripotency in mouse embryonic stem cells (ESCs). Yet to date studies on its role in human ESCs are quite limited. In this study, we report that deletion of FOXD3 in human ESCs results in loss of pluripotency and spontaneous differentiation toward meso-endoderm. Ectopic overexpression of FOXD3 in hESCs leads to two different phenotypes: Human ESCs expressing high levels of FOXD3 undergo spontaneous meso-endoderm differentiation, whereas those with lower levels of FOXD3 maintain pluripotency. Next we deleted endogenous FOXD3 in the low ectopic expression model and find that addition of exogenous FOXD3 at a low level could rescue FOXD3-deficiency phenotype in hESCs. In summary, our findings suggest that FOXD3 dose-dependently regulates the balance of human ESCs between pluripotency and meso-endoderm fates, which adds to our understanding of the role of FOXD3 in humans.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongli Shan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China
| | - Lishi Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
7
|
Osteil P, Studdert JB, Goh HN, Wilkie EE, Fan X, Khoo PL, Peng G, Salehin N, Knowles H, Han JDJ, Jing N, Fossat N, Tam PPL. Dynamics of Wnt activity on the acquisition of ectoderm potency in epiblast stem cells. Development 2019; 146:dev.172858. [PMID: 30890572 DOI: 10.1242/dev.172858] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/11/2019] [Indexed: 01/12/2023]
Abstract
During embryogenesis, the stringent regulation of Wnt activity is crucial for the morphogenesis of the head and brain. The loss of function of the Wnt inhibitor Dkk1 results in elevated Wnt activity, loss of ectoderm lineage attributes from the anterior epiblast, and the posteriorisation of anterior germ layer tissue towards the mesendoderm. The modulation of Wnt signalling may therefore be crucial for the allocation of epiblast cells to ectoderm progenitors during gastrulation. To test this hypothesis, we examined the lineage characteristics of epiblast stem cells (EpiSCs) that were derived and maintained under different signalling conditions. We showed that suppression of Wnt activity enhanced the ectoderm propensity of the EpiSCs. Neuroectoderm differentiation of these EpiSCs was further empowered by the robust re-activation of Wnt activity. Therefore, during gastrulation, the tuning of the signalling activities that mediate mesendoderm differentiation is instrumental for the acquisition of ectoderm potency in the epiblast.
Collapse
Affiliation(s)
- Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia .,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Josh B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Hwee Ngee Goh
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia.,Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nazmus Salehin
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Hilary Knowles
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Si Y, Bai J, Wu J, Li Q, Mo Y, Fang R, Lai W. LncRNA PlncRNA‑1 regulates proliferation and differentiation of hair follicle stem cells through TGF‑β1‑mediated Wnt/β‑catenin signal pathway. Mol Med Rep 2017; 17:1191-1197. [PMID: 29115537 DOI: 10.3892/mmr.2017.7944] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/27/2017] [Indexed: 11/06/2022] Open
Abstract
The present study demonstrated that hair follicle stem cells (HFSc) have multidirectional differentiation potential and participate in skin wound healing processes. Long non‑coding RNAs (lncRNAs) are defined as non‑protein coding transcripts longer than 200 nucleotides, which are important in the proliferation and differentiation of cells. The purpose of the present study was to investigate the role of PlncRNA‑1 in the proliferation and differentiation of HFSc. Results revealed that PlncRNA‑1, transforming growth factor (TGF)‑β1, Wnt and β‑catenin expression levels were significantly downregulated in HFSc. PlncRNA‑1 transfection promoted proliferation and differentiation of HFSc. TGF‑β1, Wnt and β‑catenin expression levels were upregulated in HFSc following transfection of PlncRNA‑1. Results demonstrated that TGF‑β1 inhibitor LY2109761 blocked proliferation and differentiation of HFSc promoted by PlncRNA‑1 transfection. In addition, TGF‑β1 inhibitor LY2109761 led to decreased Wnt and β‑catenin expression levels in HFSc. Furthermore, PlncRNA‑1 transfection stimulated the cell cycle of HFSc, whereas TGF‑β1 inhibitor LY2109761 inhibited the cell cycle of HFSc and decreased the acceleration of the cell cycle induced by PlncRNA‑1 transfection. In conclusion, these findings suggest that PlncRNA‑1 may promote proliferation and differentiation of HFSc through upregulation of TGF‑β1‑mediated Wnt/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Yuan Si
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510180, P.R. China
| | - Jingzhu Bai
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510630, P.R. China
| | - Jiang Wu
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510630, P.R. China
| | - Qun Li
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510630, P.R. China
| | - You Mo
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510630, P.R. China
| | - Ruihua Fang
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510630, P.R. China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
9
|
β-catenin coordinates with Jup and the TCF1/GATA6 axis to regulate human embryonic stem cell fate. Dev Biol 2017; 431:272-281. [PMID: 28943339 DOI: 10.1016/j.ydbio.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
β-catenin-mediated signaling has been extensively studied in regard to its role in the regulation of human embryonic stem cells (hESCs). However, the results are controversial and the mechanism by which β-catenin regulates the hESC fate remains unclear. Here, we report that β-catenin and γ-catenin are functionally redundant in mediating hESC adhesion and are required for embryoid body formation, but both genes are dispensable for hESC maintenance, as the undifferentiated state of β-catenin and γ-catenin double deficient hESCs can be maintained. Overexpression of β-catenin induces rapid hESC differentiation. Functional assays revealed that TCF1 plays a crucial role in hESC differentiation mediated by β-catenin. Forced expression of TCF1, but not other LEF1/TCF family members, resulted in hESC differentiation towards the definitive endoderm. Conversely, knockdown of TCF1 or inhibition of the interaction between TCF1 and β-catenin delayed hESC exit from pluripotency. Furthermore, we demonstrated that GATA6 plays a predominant role in TCF1-mediated hESC differentiation. Knockdown of GATA6 completely eliminated the effect of TCF1, while forced expression of GATA6 induced hESC differentiation. Our data thus reveal more detailed mechanisms for β-catenin in regulating hESC fate decisions and will expand our understanding of the self-renewal and differentiation circuitry in hESCs.
Collapse
|