1
|
do Carmo Neto JR, Braga YLL, Franco PIR, de Oliveira JF, Trevisan RO, Mendes KM, de Oliveira MAP, Celes MRN, Silva ACA, Machado JR, da Silva MV. Achieving the Optimal AgO Concentrations to Modulate the Anti- Trypanosoma cruzi Activity of Ag-ZnO/AgO Nanocomposites: In Vivo Investigations. Pharmaceutics 2024; 16:1415. [PMID: 39598539 PMCID: PMC11597568 DOI: 10.3390/pharmaceutics16111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: For the development of new treatments, the acute phase of Chagas disease (CD) in experimental models acts as a filter to screen out potentially effective interventions. Therefore, the aim of this study was to evaluate ZnO nanocrystals and Ag-ZnO/AgO nanocomposites containing different proportions of silver (ZnO:5Ag, ZnO:9Ag and ZnO:11Ag) in an experimental model of the acute phase of CD. Methods: C57Bl/6 mice were infected with 1000 forms of the Colombian strain of T. cruzi. The treatment was carried out by gavage with 5 mg/kg/d for 7 consecutive days from the first detection of parasitemia. Weight, parasitemia and survival were assessed during treatment and up to the day of euthanasia. After euthanasia, the cardiac and intestinal parasitism, inflammatory infiltrate, collagen deposition and cytokine dosages were analyzed. Results: It was observed that the nanocomposites ZnO:9Ag and ZnO:11Ag were the most effective in reducing parasitemia and increasing the survival of the infected animals. However, pure ZnO induced the maintenance of parasitemia and reduced their survival. The ZnO:9Ag and ZnO:11Ag nanocomposites were able to reduce the number of cardiac amastigote nests. In addition, they were responsible for reducing TNF-α and IL-6 in situ. ZnO:9Ag and ZnO:11Ag induced a reduction in the intestinal inflammatory infiltrate and neuronal protection in the myenteric plexus, as well as reducing TNF-α in situ. Conclusions: Based on these results, it is suggested that there is an ideal concentration in terms of the proportion of Ag/AgO and ZnO in nanocomposites for use against CD. Thus, ZnO:9Ag or ZnO:11Ag nanomaterials are potential candidates for the development of new biotechnological products for the therapy of CD.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Jordana Fernandes de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Rafael Obata Trevisan
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (R.O.T.); (K.M.M.)
| | - Karen Martins Mendes
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (R.O.T.); (K.M.M.)
| | - Milton Adriano Pelli de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Mara Rúbia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió 57072-900, AL, Brazil;
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, GO, Brazil; (J.R.d.C.N.); (Y.L.L.B.); (P.I.R.F.); (J.F.d.O.); (M.A.P.d.O.); (M.R.N.C.)
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil; (R.O.T.); (K.M.M.)
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba 38025-180, MG, Brazil;
| |
Collapse
|
2
|
Yang C, Lu Z, Xia Y, Zhang J, Zou Z, Chen C, Wang X, Tian X, Cheng S, Jiang X. Alterations of Gut-Derived Melatonin in Neurobehavioral Impairments Caused by Zinc Oxide Nanoparticles. Int J Nanomedicine 2023; 18:1899-1914. [PMID: 37057188 PMCID: PMC10088905 DOI: 10.2147/ijn.s386240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/24/2022] [Indexed: 04/15/2023] Open
Abstract
Purpose The widespread use of zinc oxide nanoparticles (ZnONPs) has raised concerns about its potential toxicity. Melatonin is a neurohormone with tremendous anti-toxic effects. The enterochromaffin cells are an essential source of melatonin in vivo. However, studies on the effects of ZnONPs on endogenous melatonin are minimal. In the present study, we aimed to investigate the effects of ZnONPs exposure on gut-derived melatonin. Methods In the present study, 64 adult male mice were randomly and equally divided into four groups, and each group was exposed to ZnONPs (0, 6.5, 13, 26 mg/kg/day) for 30 days. Subsequently, the neurobehavioral changes were observed. The effects of ZnONPs on the expression of melatonin-related genes arylalkylamine N-acetyltransferase (Aanat), melatonin receptor1A (Mt1/Mtnr1a), melatonin receptor1B (Mt2/Mtnr1b), and neuropeptide Y (Npy) on melatonin synthesis and secretion in duodenum, jejunum, ileum and colon during day and night were also assessed. Results The results revealed that oral exposure to ZnONPs induced impairments of locomotor activity and anxiety-like behavior in adult mice during the day. The transcriptional analysis of brain tissues revealed that exposure to ZnONPs caused profound effects on genes and transcriptional signaling pathways associated with melatonin synthesis and metabolic processes during the day and night. We also observed that, in the duodenum, jejunum, ileum and colon sites, ZnONPs resulted in a significant reduction in the expression of the gut-derived melatonin rate-limiting enzyme Aanat, the membrane receptors Mt1 and Mt2 and Npy during the day and night. Conclusion Taken together, this is the first study shows that oral exposure to ZnONPs interferes with melatonin synthesis and secretion in different intestinal segments of adult mice. These findings will provide novelty insights into the neurotoxic mechanisms of ZnONPs and suggest an alternative strategy for the prevention of ZnONP neurotoxicity.
Collapse
Affiliation(s)
- Cantao Yang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhaohong Lu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xiaoliang Wang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People’s Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Shuqun Cheng; Xuejun Jiang, Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Number 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Tel +86-23-68485008, Fax +86-23-68485207, Email ;
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
3
|
Xu Y, Zhao Y, Liu S, Lv S, Chen L, Wang W, Feng Y, Fu F, Xu H. Zinc Oxide Particles Can Cause Ovarian Toxicity by Oxidative Stress in Female Mice Model. Int J Nanomedicine 2022; 17:4947-4960. [PMID: 36275479 PMCID: PMC9579868 DOI: 10.2147/ijn.s373147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO NPs) participate in all aspects of our lives, but with their wide application, more and more disadvantages are exposed. The goal of this study was to investigate the toxicity of ZnO NPs in female mice ovaries and explore its potential mechanism. Methods In this study, adult female mice were orally exposed to 0, 100, 200, and 400 mg/kg ZnO NPs for 7 days. We explored the underlying mechanisms via the intraperitoneal injection of N-acetyl-cysteine (NAC), an inhibitor of oxidative stress, and salubrinal (Sal), an inhibitor of endoplasmic reticulum (ER) stress. Results The results indicated that serum estradiol and progesterone levels declined greatly with increasing ZnO NPs dosage. Hematoxylin and eosin (HE) staining revealed increased atretic follicles and exfoliated follicular granulosa cells. Moreover, at the transcriptional level, antioxidant-related genes such as Keap1 and Nrf2, and ER stress-related genes PERK, eIF2α, and ATF4 were markedly upregulated. In addition, the expression of Caspase12, Caspase9, and Caspase3, which are genes related to apoptosis, was also upregulated in all ZnO NPs treatment groups. Serum malondialdehyde (MDA) content was remarkably up-regulated, whereas superoxide dismutase (SOD) activity was down-regulated. The 400 mg/kg ZnO NPs treatment group suffered the most substantial harm. However, ovarian damage was repaired when NAC and Sal were added to this group. Conclusion ZnO NPs had toxic effects on the ovary of female mice, which were due to oxidative stress, ER stress, and the eventual activation of apoptosis.
Collapse
Affiliation(s)
- Yuanyuan Xu
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China
| | - Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China
| | - Sidi Lv
- Second Clinical Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Ling Chen
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341001, People’s Republic of China
| | - Wanzhen Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yueying Feng
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, People’s Republic of China,Correspondence: Fen Fu, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rode, Nanchang, 330000, People’s Republic of China, Tel +86-791-8631-1753, Email
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People’s Republic of China,Hengyi Xu, State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People’s Republic of China, Tel +86-791-8830-4447-ext-9520, Fax +86-791-8830-4400, Email
| |
Collapse
|
4
|
|
5
|
Chen L, Wu H, Hong W, Aguilar ZP, Fu F, Xu H. The effect of reproductive toxicity induced by ZnO NPs in mice during early pregnancy through mitochondrial apoptotic pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:1143-1151. [PMID: 33599401 DOI: 10.1002/tox.23113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The potential toxicity of Zinc oxide nanoparticles (ZnO NPs) to human beings has become a widespread concern. This study explored the reproductive toxicity and the mechanism of toxicity of ZnO NPs in early pregnant mice. The results showed that abnormal weight changes, induced inflammation, reduced level of serum sex hormones, damaged uterus, increased abortion, and abnormal development of fetus. In the uterus, the transcription levels of ZnT-1, HO-1, Bax, Bax/Bcl-2, JNK, and Caspase-3 were significantly up-regulated while Bcl-2, ER-1 and PR were significantly down-regulated. The TUNEL-positive cells increased that were exposed to high levels of ZnO NPs. In summary, those results indicated that Zn from high levels of exposure to ZnO NPs accumulated in the uterus that could have caused the formation of ROS that led to oxidative stress, which might have activated the mitochondrial apoptotic pathway that could have caused the uterine injury which induced the observed reproductive toxicity.
Collapse
Affiliation(s)
- Ling Chen
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Haifang Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- The Third Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | | - Fen Fu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|
7
|
Chen B, Hong W, Tang Y, Zhao Y, Aguilar ZP, Xu H. Protective effect of the NAC and Sal on zinc oxide nanoparticles-induced reproductive and development toxicity in pregnant mice. Food Chem Toxicol 2020; 143:111552. [PMID: 32640348 DOI: 10.1016/j.fct.2020.111552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/22/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
The growing use of zinc oxide nanoparticles (ZnO NPs) in various applications has raised many concerns about the potential risks to human health. In this research, the protective effects of cellular oxidative stress inhibitor N-Acetyl-cysteine (NAC) and endoplasmic reticulum (ER) stress inhibitor Salubrinal (Sal) on reproductive toxicity induced by ZnO NPs were investigated. The results showed that application of these two kinds of cell stress inhibitors after oral ingestion of ZnO NPs could prevent the weight loss of pregnant mice; reduce zinc content in the uterus, placenta and fetus; reduce abnormal development of the offspring; and decrease fetal abortion. Furthermore, RT-qPCR, Western blot and immunofluorescence assay results indicated that NAC restored the expression of Gclc, reduced the expression of ATF4, JNK and Caspase-12, and decreased the expression of eNOS and IGF-1, in the placenta. Sal decreased the expression of ATF4, JNK and Caspase-12, and increased the expression of eNOS and IGF-1caused by the oral ingestion of ZnO NPs. These results indicated that treatment with NAC and Sal after oral exposure could reduce reproductive and development toxicity caused by ZnO NPs which induced reproductive and development toxicity that was probably caused by the activation of oxide stress and ER stress.
Collapse
Affiliation(s)
- Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
8
|
Chen B, Hong W, Yang P, Tang Y, Zhao Y, Aguilar ZP, Xu H. Nano Zinc Oxide Induced Fetal Mice Growth Restriction, Based on Oxide Stress and Endoplasmic Reticulum Stress. NANOMATERIALS 2020; 10:nano10020259. [PMID: 32024284 PMCID: PMC7075166 DOI: 10.3390/nano10020259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
ZnO NPs have been assessed to show adverse effects on reproductive organs, but the molecular mechanisms of reproductive toxicity have not been sufficiently studied. In this research, the dosage effects from the oral exposure of ZnO NPs (30 nm) to pregnant mice in gestation day 10.5 to 17.5 was analyzed. Pregnant mice exposed to ZnO NPs induced dam injury, mice fetal growth restriction, and the fetus number decreased. The pathological evaluation showed that ZnO NPs exposure caused placental spongiotrophoblast area decease and structural damage. The RT-qPCR and immunocytochemistry data indicated that ZnO NPs could induce placenta oxide stress, endoplasmic reticulum stress responses, apoptosis, and altered placental function. These findings indicated that ZnO NPs could induce dam injury and fetal growth restriction. Reproductive toxicity of ZnO NPs may be due to placental injury and function alteration caused by apoptosis, oxide stress, and endoplasmic reticulum stress after ZnO NPs exposure.
Collapse
Affiliation(s)
- Bolu Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Wuding Hong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Pengfei Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Yizhou Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (B.C.); (W.H.); (P.Y.); (Y.T.); (Y.Z.)
- Correspondence: ; Tel.: +0086-791-8830-4447 ext. 9520; Fax: +008s6-791-8830-4400
| |
Collapse
|
9
|
Tang KS. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci 2019; 239:117011. [PMID: 31669241 DOI: 10.1016/j.lfs.2019.117011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a multifaceted and costly disease, which requires serious attention. Finding a cheaper anti-diabetic alternative that can act on multiple disease-related targets and pathways is the ultimate treatment goal for DM. Nanotechnology has offered some exciting possibilities in biomedical and drug delivery applications. Zinc oxide nanoparticles (ZnO-NPs), a novel agent to deliver zinc, have great implications in many disease therapies including DM. This review summarizes the pharmacological mechanisms by which ZnO-NPs alleviate DM and diabetic complications. Research implications and future perspectives were also discussed.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
10
|
Doumandji Z, Safar R, Lovera-Leroux M, Nahle S, Cassidy H, Matallanas D, Rihn B, Ferrari L, Joubert O. Protein and lipid homeostasis altered in rat macrophages after exposure to metallic oxide nanoparticles. Cell Biol Toxicol 2019; 36:65-82. [PMID: 31352547 PMCID: PMC7051947 DOI: 10.1007/s10565-019-09484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Metal oxide nanoparticles (NPs), such as ZnO, ZnFe2O4, and Fe2O3, are widely used in industry. However, little is known about the cellular pathways involved in their potential toxicity. Here, we particularly investigated the key molecular pathways that are switched on after exposure to sub-toxic doses of ZnO, ZnFe2O4, and Fe2O3 in the in vitro rat alveolar macrophages (NR8383). As in our model, the calculated IC50 were respectively 16, 68, and more than 200 μg/mL for ZnO, ZnFe2O4, and Fe2O3; global gene and protein expression profiles were only analyzed after exposure to ZnO and ZnFe2O4 NPs. Using a rat genome microarray technology, we found that 985 and 1209 genes were significantly differentially expressed in NR8383 upon 4 h exposure to ¼ IC50 of ZnO and ZnFe2O4 NPs, respectively. It is noteworthy that metallothioneins were overexpressed genes following exposure to both NPs. Moreover, Ingenuity Pathway Analysis revealed that the top canonical pathway disturbed in NR8383 exposed to ZnO and ZnFe2O4 NPs was eIF2 signaling involved in protein homeostasis. Quantitative mass spectrometry approach performed from both NR8383 cell extracts and culture supernatant indicated that 348 and 795 proteins were differentially expressed upon 24 h exposure to ¼ IC50 of ZnO and ZnFe2O4 NPs, respectively. Bioinformatics analysis revealed that the top canonical pathways disturbed in NR8383 were involved in protein homeostasis and cholesterol biosynthesis for both exposure conditions. While VEGF signaling was specific to ZnO exposure, iron homeostasis signaling pathway was specific to ZnFe2O4 NPs. Overall, the study provides resource of transcriptional and proteomic markers of response to ZnO and ZnFe2O4 NP-induced toxicity through combined transcriptomics, proteomics, and bioinformatics approaches.
Collapse
Affiliation(s)
- Zahra Doumandji
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France.
| | - Ramia Safar
- Faculté de Médecine, INSERM UMR_S NGERE 954, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mélanie Lovera-Leroux
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Sara Nahle
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Hilary Cassidy
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David Matallanas
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Bertrand Rihn
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Luc Ferrari
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| | - Olivier Joubert
- Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, 2 allée André Guinier, BP 50840, 54011, Nancy, France
| |
Collapse
|
11
|
Singh S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 2019; 29:300-311. [DOI: 10.1080/15376516.2018.1553221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Science and Education, Raebareli, India
| |
Collapse
|