1
|
Fang L, Sun Y, Dong M, Yang M, Hao J, Li J, Zhang H, He N, Du L, Xu C. RMI1 facilitates repair of ionizing radiation-induced DNA damage and maintenance of genomic stability. Cell Death Discov 2023; 9:426. [PMID: 38007566 PMCID: PMC10676437 DOI: 10.1038/s41420-023-01726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Ionizing radiation (IR) causes a wide variety of DNA lesions, of which DNA double-stranded breaks (DSBs) are the most deleterious. Homologous recombination (HR) is a crucial route responsible for repairing DSBs. RecQ-mediated genome instability protein 1 (RMI1) is a member of an evolutionarily conserved Bloom syndrome complex, which prevents and resolves aberrant recombination products during HR, thereby promoting genome stability. However, little is known about the role of RMI1 in regulating the cellular response to IR. This study aimed to understand the cellular functions and molecular mechanisms by which RMI1 maintains genomic stability after IR exposure. Here, we showed IR upregulated the RMI1 protein level and induced RMI1 relocation to the DNA damage sites. We also demonstrated that the loss of RMI1 in cells resulted in enhanced levels of DNA damage, sustained cell cycle arrest, and impaired HR repair after IR, leading to reduced cell viability and elevated genome instability. Taken together, our results highlighted the direct roles of RMI1 in response to DNA damage induced by IR and implied that RMI1 might be a new genome safeguard molecule to radiation-induced damage.
Collapse
Affiliation(s)
- Lianying Fang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- School of Preventive Medicine Sciences, Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mingxin Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jianxiu Hao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Jiale Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huanteng Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
2
|
Stevelink R, Campbell C, Chen S, Abou-Khalil B, Adesoji OM, Afawi Z, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Auce P, Avbersek A, Bahlo M, Baker MD, Balagura G, Balestrini S, Barba C, Barboza K, Bartolomei F, Bast T, Baum L, Baumgartner T, Baykan B, Bebek N, Becker AJ, Becker F, Bennett CA, Berghuis B, Berkovic SF, Beydoun A, Bianchini C, Bisulli F, Blatt I, Bobbili DR, Borggraefe I, Bosselmann C, Braatz V, Bradfield JP, Brockmann K, Brody LC, Buono RJ, Busch RM, Caglayan H, Campbell E, Canafoglia L, Canavati C, Cascino GD, Castellotti B, Catarino CB, Cavalleri GL, Cerrato F, Chassoux F, Cherny SS, Cheung CL, Chinthapalli K, Chou IJ, Chung SK, Churchhouse C, Clark PO, Cole AJ, Compston A, Coppola A, Cosico M, Cossette P, Craig JJ, Cusick C, Daly MJ, Davis LK, de Haan GJ, Delanty N, Depondt C, Derambure P, Devinsky O, Di Vito L, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Elger CE, Ellis CA, Eriksson JG, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Ferri L, Feucht M, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, Franke A, French JA, Freri E, Gagliardi M, Gambardella A, Geller EB, Giangregorio T, Gjerstad L, et alStevelink R, Campbell C, Chen S, Abou-Khalil B, Adesoji OM, Afawi Z, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Auce P, Avbersek A, Bahlo M, Baker MD, Balagura G, Balestrini S, Barba C, Barboza K, Bartolomei F, Bast T, Baum L, Baumgartner T, Baykan B, Bebek N, Becker AJ, Becker F, Bennett CA, Berghuis B, Berkovic SF, Beydoun A, Bianchini C, Bisulli F, Blatt I, Bobbili DR, Borggraefe I, Bosselmann C, Braatz V, Bradfield JP, Brockmann K, Brody LC, Buono RJ, Busch RM, Caglayan H, Campbell E, Canafoglia L, Canavati C, Cascino GD, Castellotti B, Catarino CB, Cavalleri GL, Cerrato F, Chassoux F, Cherny SS, Cheung CL, Chinthapalli K, Chou IJ, Chung SK, Churchhouse C, Clark PO, Cole AJ, Compston A, Coppola A, Cosico M, Cossette P, Craig JJ, Cusick C, Daly MJ, Davis LK, de Haan GJ, Delanty N, Depondt C, Derambure P, Devinsky O, Di Vito L, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Elger CE, Ellis CA, Eriksson JG, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Ferri L, Feucht M, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, Franke A, French JA, Freri E, Gagliardi M, Gambardella A, Geller EB, Giangregorio T, Gjerstad L, Glauser T, Goldberg E, Goldman A, Granata T, Greenberg DA, Guerrini R, Gupta N, Haas KF, Hakonarson H, Hallmann K, Hassanin E, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne HO, Hirose S, Hirsch E, Hjalgrim H, Howrigan DP, Hucks D, Hung PC, Iacomino M, Imbach LL, Inoue Y, Ishii A, Jamnadas-Khoda J, Jehi L, Johnson MR, Kälviäinen R, Kamatani Y, Kanaan M, Kanai M, Kantanen AM, Kara B, Kariuki SM, Kasperavičiūte D, Kasteleijn-Nolst Trenite D, Kato M, Kegele J, Kesim Y, Khoueiry-Zgheib N, King C, Kirsch HE, Klein KM, Kluger G, Knake S, Knowlton RC, Koeleman BPC, Korczyn AD, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurki MI, Kurlemann G, Kuzniecky R, Kwan P, Labate A, Lacey A, Lal D, Landoulsi Z, Lau YL, Lauxmann S, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Li QS, Licchetta L, Lin KL, Lindhout D, Linnankivi T, Lopes-Cendes I, Lowenstein DH, Lui CHT, Madia F, Magnusson S, Marson AG, May P, McGraw CM, Mei D, Mills JL, Minardi R, Mirza N, Møller RS, Molloy AM, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neale BM, Neubauer B, Newton CRJC, Nöthen MM, Nothnagel M, Nürnberg P, O’Brien TJ, Okada Y, Ólafsson E, Oliver KL, Özkara C, Palotie A, Pangilinan F, Papacostas SS, Parrini E, Pato CN, Pato MT, Pendziwiat M, Petrovski S, Pickrell WO, Pinsky R, Pippucci T, Poduri A, Pondrelli F, Powell RHW, Privitera M, Rademacher A, Radtke R, Ragona F, Rau S, Rees MI, Regan BM, Reif PS, Rhelms S, Riva A, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Sander JW, Sander T, Scala M, Scattergood T, Schachter SC, Schankin CJ, Scheffer IE, Schmitz B, Schoch S, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sham P, Sheidley BR, Shih JJ, Sills GJ, Sisodiya SM, Smith MC, Smith PE, Sonsma ACM, Speed D, Sperling MR, Stefansson H, Stefansson K, Steinhoff BJ, Stephani U, Stewart WC, Stipa C, Striano P, Stroink H, Strzelczyk A, Surges R, Suzuki T, Tan KM, Taneja RS, Tanteles GA, Taubøll E, Thio LL, Thomas GN, Thomas RH, Timonen O, Tinuper P, Todaro M, Topaloğlu P, Tozzi R, Tsai MH, Tumiene B, Turkdogan D, Unnsteinsdóttir U, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vetro A, Vining EPG, Visscher F, von Brauchitsch S, von Wrede R, Wagner RG, Weber YG, Weckhuysen S, Weisenberg J, Weller M, Widdess-Walsh P, Wolff M, Wolking S, Wu D, Yamakawa K, Yang W, Yapıcı Z, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zhou W, Zimprich F, Zsurka G, Zulfiqar Ali Q. GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture. Nat Genet 2023; 55:1471-1482. [PMID: 37653029 PMCID: PMC10484785 DOI: 10.1038/s41588-023-01485-w] [Show More Authors] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment.
Collapse
|
6
|
Sun Y, Fang L, Yang M, He N, Wang J, Zhang M, Ji K, Wang Q, Liu Y, Du L, Wang Y, Xu C, Liu Q. Identification and Bioinformatic Assessment of circRNA Expression After RMI1 Knockdown and Ionizing Radiation Exposure. DNA Cell Biol 2020; 40:80-92. [PMID: 33202158 DOI: 10.1089/dna.2020.5976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecQ-mediated genome instability protein 1 (RMI1) is an important component of the BLM-Topo IIIα-RMI1-RMI2 complex and plays a critical role in maintaining genome stability. However, the cellular functions of RMI1 in response to ionizing radiation (IR) are poorly understood. In this study, we found that RMI1 knockdown led to enhanced radiosensitivity and apoptosis after irradiation. To analyze the effect of RMI1 knockdown on the expression of circular RNAs (circRNAs), we performed high-throughput RNA sequencing on four groups of human embryonic kidney (HEK) 293T cells: control cells and RMI1 knockdown cells with or without IR exposure. A total of 179 and 160 differentially expressed circRNAs (DE-circRNAs) were identified under RMI1 knockdown without and with exposure to IR, respectively. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these DE-circRNAs were involved in a variety of functions and signal pathways, including histone H3-K36 methylation, nuclear pore organization, mRNA destabilization, the mismatch repair pathway, and the apoptotic signaling pathway. Overall, our results indicate that RMI1 plays a crucial role in the response to IR and, more generally, that circRNAs are important in the regulatory mechanism of the radiation response.
Collapse
Affiliation(s)
- Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lianying Fang
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
8
|
Fang L, Sun X, Wang Y, Du L, Ji K, Wang J, He N, Liu Y, Wang Q, Zhai H, Hao J, Xu C, Liu Q. RMI1 contributes to DNA repair and to the tolerance to camptothecin. FASEB J 2019; 33:5561-5570. [PMID: 30676768 DOI: 10.1096/fj.201802014r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Maintenance of genome integrity is critical for faithful propagation of genetic information and the prevention of the mutagenesis induced by various DNA damage events. RecQ-mediated genome instability protein 1 (RMI1), together with Bloom syndrome protein and topoisomerase IIIα, form an evolutionarily conserved complex that is critical for the maintenance of genomic stability. Herein, we report that RMI1 depletion increases cell sensitivity to camptothecin treatment, as shown by an elevation of genotoxic stress-induced DNA double-strand breaks, a stronger activation of the DNA damage response, and a greater G2/M cell cycle delay. Our findings support that, upon DNA damage, RMI1 forms nuclear foci at the damaged regions, interacts with RAD51, and facilitates the recruitment of RAD51 to initiate homologous recombination. Our data reveal the importance of RMI1 in response to DNA double-strand breaks and shed light on the molecular mechanisms by which RMI1 contributes to maintain genome stability.-Fang, L., Sun, X., Wang, Y., Du, L., Ji, K., Wang, J., He, N., Liu, Y., Wang, Q., Zhai, H., Hao, J., Xu, C., Liu, Q. RMI1 contributes to DNA repair and to the tolerance to camptothecin.
Collapse
Affiliation(s)
- Lianying Fang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,The Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, China; and
| | - Xiaohui Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hezheng Zhai
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jianxiu Hao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|