1
|
Bakr El-Nassan H. Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents. Pharm Dev Technol 2024; 29:1084-1092. [PMID: 39452425 DOI: 10.1080/10837450.2024.2421786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Deep eutectic solvents (DESs) are green alternatives to ionic liquids with wide applications in organic synthesis and catalysis. DESs are characterized by being easily prepared, biodegradable, nontoxic, and noninflammable. When one or more of the DES components is active pharmaceutical ingredient (API), the eutectic mixtures are named as therapeutic deep eutectic solvents (THEDESs). THEDESs are prepared in order to improve the solubility and/or the permeability of the APIs. This review presents a brief summary of the most important THEDESs reported to date having antimicrobial and/or anticancer activities. The challenges and limitations of THEDES preparation were also discussed. The work presented here indicated the importance of THEDES as a promising drug delivery system that can overcome the bioavailability problems while retaining or enhancing the biological activity of its components.
Collapse
Affiliation(s)
- Hala Bakr El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Zhang L, Wang G, Li Z, Yang J, Li H, Wang W, Li Z, Li H. Molecular pharmacology and therapeutic advances of monoterpene perillyl alcohol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155826. [PMID: 38897045 DOI: 10.1016/j.phymed.2024.155826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Perillyl alcohol (POH) is a aroma monoterpene commonly obtained from various plants' essential oil. Recently, increasing researches have demonstrated that POH may be useful, not only as flavor compound, but also as bioactive molecule because of a variety of biological activities. PURPOSE The aim of this review is to summarize the production, pharmacological activities and molecular mechanism, active derivatives, toxicity and parmacokinetics, and industrial application of POH. METHODS A systematic search of published articles up to January 2024 in Web of Science, China Knowledge Network, and PubMed databases is conducted using the following keywords: POH, POH derivatives, biological or pharmacological, production or synthesis, pharmacokinetics, toxicity and application. RESULTS Biotechnological production is considered to be a potential alternative approach to generate POH. POH provides diverse pharmacological benefits, including anticancer, antimicrobial, insecticidal, antioxidant, anti-inflammatory, hypotensive, vasorelaxant, antinociceptive, antiasthmatic, hepatoprotective effects, etc. The underlying mechanisms of action include modulation of NF-κB, JNK/c-Jun, Notch, Akt/mTOR, PI3K/Akt/eNOS, STAT3, Nrf2 and ERS response pathways, mitigation of mitochondrial dysfunction and membrane integrity damage, and inhibition of ROS accumulation, pro-inflammatory cytokines release and NLRP3 activation. What's more, the proteins or genes influenced by POH against diseases refer to Bax, Bcl-2, cyclin D1, CDK, p21, p53, HIF-1α, AP-1, caspase-3, M6P/IGF2R, PARP, VEGF, etc. Some clinical studies report that intranasal delivery of POH is a safe and effective treatment for cancer, but further clinical investigations are needed to confirm other health benefits of POH in human healthy. Depending on these health-promoting properties together with desirable flavor and safety, POH can be employed as dietary supplement, preservative and flavor additive in food and cosmetic fields, as building block in synthesis fields, as anticancer drug in medicinal fields, and as pesticides and herbicides in agricultural fields. CONCLUSION This review systematically summarizes the recent advances in POH and highlights its therapeutic effects and potential mechanisms as well as the clinical settings, which is helpful to develop POH into functional food and new candidate drug for prevention and management of diseases. Future studies are needed to conduct more biological activity studies of POH and its derivatives, and check their clinical efficacy and potential side effects.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| | - Guoguo Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zehao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China.
| | - Haoliang Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, PR China
| | - Wanying Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
3
|
Fatima T, Fatima Z, Hameed S. Abrogation of efflux pump activity, biofilm formation, and immune escape by candidacidal geraniol in emerging superbug, Candida auris. Int Microbiol 2023; 26:881-891. [PMID: 36847907 DOI: 10.1007/s10123-023-00343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
During the last decade, Candida auris emerged as a threatening human fungal pathogen that notably caused outbreaks around the globe with high mortality. Considering C. auris species as newly discovered fungi, the evolutionary features remain elusive. The antifungal resistance which is a norm in C. auris underlines the need for innovative therapeutic options. ATP Binding Cassette (ABC) superfamily efflux pumps overexpression and biofilms are known to be major contributors to multidrug resistance (MDR) in C. auris. Therefore, herein, we investigated the antifungal potential of geraniol (Ger) as a promising natural compound in the fight against MDR C. auris. Our experiments proved that Ger was fungicidal in nature and impaired rhodamine 6G (R6G) efflux, confirming the specific effect on ABC transporters. Kinetic studies unravelled the competitive mode of inhibition by Ger for R6G efflux since the apparent Km increased with no change in Vmax value. Mechanistic insights also revealed that Ger depleted ergosterol content in C. auris. Furthermore, Ger led to inhibition in biofilm formation as evident from crystal violet staining, biofilm metabolic and biomass measurements. Additionally, enhanced survival of Caenorhabditis elegans model after C. auris infection demonstrated the in vivo efficacy of Ger. Lastly, the in vivo efficacy was confirmed from a THP-1 cell line model which depicted enhanced macrophage-mediated killing in the presence of Ger. Modulation of C. auris efflux pump activity and biofilm formation by Ger represents a promising approach to combat MDR. Together, this study demonstrated the potential therapeutic insights of Ger as a promising addition to the antifungal armamentarium required to treat emerging and resistant C. auris.
Collapse
Affiliation(s)
- Tazeen Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, - 61922, Saudi Arabia.
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
| |
Collapse
|
4
|
Potential Anti-Candida albicans Mechanism of Trichoderma Acid from Trichoderma spirale. Int J Mol Sci 2023; 24:ijms24065445. [PMID: 36982520 PMCID: PMC10049406 DOI: 10.3390/ijms24065445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Candida albicans is the main causal pathogen of fungal infections in human beings. Although diverse anti-C. albicans drugs have been explored, the drug resistance and side effects of these drugs are intensifying. Thus, it is urgent to explore new anti-C. albicans compounds from natural products. In this study, we identified trichoderma acid (TA), a compound from Trichoderma spirale with a strong inhibitory effect on C. albicans. Transcriptomic and iTRAQ-based proteomic analyses of TA-treated C. albicans in combination with scanning electronic microscopy and reactive oxygen species (ROS) detection were performed to investigate the potential targets of TA. The most significant differentially expressed genes and proteins after TA treatment were verified through Western blot analysis. Our results revealed that mitochondrial membrane potential, endoplasmic reticulum, ribosomes in the mitochondria, and cell walls were disrupted in TA-treated C. albicans, leading to the accumulation of ROS. The impaired enzymatic activities of superoxide dismutase further contributed to the increase in ROS concentration. The high concentration of ROS led to DNA damage and cell skeleton destruction. The expression levels of Rho-related GTP-binding protein RhoE (RND3), asparagine synthetase (ASNS), glutathione S-transferase, and heat shock protein 70 were significantly up-regulated in response to apoptosis and toxin stimulation. These findings suggest that RND3, ASNS, and supereoxide dismutase 5 are the potential targets of TA, as further demonstrated through Western blot analysis. The combination of transcriptomic, proteomic, and cellular analyses would provide clues for the anti-C. albicans mechanism of TA and the defensive response mechanism of C. albicans. TA is thus recognized as a promising new anti-C. albicans leading compound that alleviates the hazard of C. albicans infection in human beings.
Collapse
|
5
|
Perillyl alcohol and its synthetic derivatives: the rising of a novel class of selective and potent antitumoral compounds. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
7
|
Gupta P, Poluri KM. Elucidating the Eradication Mechanism of Perillyl Alcohol against Candida glabrata Biofilms: Insights into the Synergistic Effect with Azole Drugs. ACS BIO & MED CHEM AU 2022; 2:60-72. [PMID: 37102177 PMCID: PMC10114769 DOI: 10.1021/acsbiomedchemau.1c00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased incidences of fungal infections and associated mortality have accelerated the need for effective and alternative therapeutics. Perillyl alcohol (PA) is a terpene produced by the hydroxylation of limonene via the mevalonate pathway. In pursuit of an alternative antifungal agent, we studied the effect of PA on the biofilm community of Candida glabrata and on different cellular pathways to decipher its mode of action. PA efficiently inhibited growth and eradicated biofilms by reducing carbohydrate and eDNA content in the extracellular matrix. PA reduced the activity of hydrolytic enzymes in the ECM of C. glabrata biofilm. The chemical profiling study has given insights into the overall mode of action of PA in C. glabrata and the marked involvement of the cell wall and membrane, ergosterol biosynthesis, oxidative stress, and DNA replication. The spectroscopic and RT-PCR studies suggested a strong interaction of PA with chitin, β-glucan, ergosterol, and efflux pump, thus indicating increased membrane fluidity in C. glabrata. Furthermore, the microscopic and flow cytometry analysis emphasized that PA facilitated the change in mitochondrial activity, increased Ca2+ influx via overexpression of voltage-gated Ca2+ channels, and enhanced cytochrome C release from mitochondria. In addition, PA interferes with DNA replication and thus hinders the cell cycle progression at the S-phase. All these studies together established that PA mitigates the C. glabrata biofilms by targeting multiple cellular pathways. Interestingly, PA also potentiated the efficacy of azole drugs, particularly miconazole, against C. glabrata and its clinical isolates. Conclusively, the study demonstrated the use of PA as an effective antifungal agent alone or in combination with FDA-approved conventional drugs for fungal biofilm eradication.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
8
|
Ding Y, Zhang K, Yin Y, Wu J. D319 induced antifungal effects through ROS-mediated apoptosis and inhibited isocitrate lyase in Candida albicans. Biochim Biophys Acta Gen Subj 2022; 1866:130050. [PMID: 34800580 DOI: 10.1016/j.bbagen.2021.130050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Candida albicans (C. albicans) is an opportunistic pathogen that can cause superficial and life-threatening systemic infections in immunocompromised patients. However, the available clinically antifungals are limited. Therefore, the development of effective antifungal agents and therapies is urgently needed. Quinoline type of compounds were reported to possess potent anti-fungal effect. A series of quinoline derivatives were synthesized. Moreover their inhibitory activities and mechanisms on C. albicans were evaluated in this study. METHODS The structure of D319 was identified by extensive spectroscopic analysis. The antifungal activity of D319 on C. albicans was evaluated using conventional methods, including the inhibition zone diameters with filter paper, Clinical Laboratory Standard Institute (CLSI) broth microdilution method in vitro, and in a murine model in vivo. Flow cytometry, fluorescence microscopy, western blot, knockout mutant and revertant strain techniques, and molecular modeling were applied to explore the mechanism of action of D319 in anti-Candida. RESULTS D319 exhibited potent anti-Candida activity with Minimum Inhibitory Concentration value of 2.5 μg/mL in vitro. D319 significantly improved survival rate and reduced fungal burden compared to vehicle control in a murine model in vivo. The treatment of C. albicans with D319 resulted in fungal apoptosis through reactive oxygen species (ROS) accumulation in C. albicans. Furthermore, D319 inhibited the glyoxylate enzyme isocitrate lyase (ICL) of C. albicans, which was also confirmed by docking analysis. CONCLUSIONS Quinoline compound D319 exhibited strong anti-Candida activities in vitro and in vivo models through inhibiting ICL activity and ROS accumulation in C. albicans. GENERAL SIGNIFICANCE This study showed that compound D319 as a novel isocitrate lyase inhibitor, would be a promising anti-Candida lead compound, which provided a potential application of this type of compounds in fighting clinical fungal infections. Furthermore, this study also supported ICL as a potential target for anti-Candida drug discovery.
Collapse
Affiliation(s)
- Yanjiao Ding
- Department of Pharmacy, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan 250022, Shandong, PR China.
| | - Kai Zhang
- Department of Ophthalmology, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan 250022, Shandong, PR China
| | - Yiqiang Yin
- Department of Pathology, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan 250022, Shandong, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan 250022, Shandong, PR China.
| |
Collapse
|
9
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Jin C, Wang B, Fang W. Caenorhabditis elegans as an Infection Model for Pathogenic Mold and Dimorphic Fungi: Applications and Challenges. Front Cell Infect Microbiol 2021; 11:751947. [PMID: 34722339 PMCID: PMC8554291 DOI: 10.3389/fcimb.2021.751947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The threat burden from pathogenic fungi is universal and increasing with alarming high mortality and morbidity rates from invasive fungal infections. Understanding the virulence factors of these fungi, screening effective antifungal agents and exploring appropriate treatment approaches in in vivo modeling organisms are vital research projects for controlling mycoses. Caenorhabditis elegans has been proven to be a valuable tool in studies of most clinically relevant dimorphic fungi, helping to identify a number of virulence factors and immune-regulators and screen effective antifungal agents without cytotoxic effects. However, little has been achieved and reported with regard to pathogenic filamentous fungi (molds) in the nematode model. In this review, we have summarized the enormous breakthrough of applying a C. elegans infection model for dimorphic fungi studies and the very few reports for filamentous fungi. We have also identified and discussed the challenges in C. elegans-mold modeling applications as well as the possible approaches to conquer these challenges from our practical knowledge in C. elegans-Aspergillus fumigatus model.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | - James C Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anene N Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Anthony C Ike
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
10
|
Silva E, Oliveira F, Silva JM, Matias A, Reis RL, Duarte ARC. Optimal Design of THEDES Based on Perillyl Alcohol and Ibuprofen. Pharmaceutics 2020; 12:pharmaceutics12111121. [PMID: 33233659 PMCID: PMC7699764 DOI: 10.3390/pharmaceutics12111121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic deep eutectic systems (THEDES) have dramatically expanded their popularity in the pharmaceutical field due to their ability to increase active pharmaceutical ingredients (APIs) bioavailability. However, their biological performance has not yet been carefully scrutinized. Herein, THEDES based on the binary mixture of perillyl alcohol (POH) and ibuprofen (IBU) were prepared using different molar ratios. Our comprehensive strategy includes the characterization of their thermal and structural behavior to identify the molar ratios that successfully form deep eutectic systems. The in vitro solubility of the different systems prepared has demonstrated that, unlike other reported examples, the presence of the terpene did not affect the solubility of the anti-inflammatory agent in a physiological simulated media. The biological performance of the systems was studied in terms of their antimicrobial activity against a wide panel of microorganisms. The examined THEDES showed relevant antimicrobial activity against all tested microbial strains, with the exception of P. aeruginosa. A synergistic effect from the combination of POH and IBU as a eutectic system was verified. Furthermore, the cytotoxic profile of these eutectic systems towards colorectal cancer (CRC) in vitro cell models was also evaluated. The results provide the indication that the cell viability varies in a dose-dependent manner, with a selective THEDES action towards CRC cells. With tunable bioactivities in a ratio-dependent manner, THEDES enhanced the antimicrobial and anticancer properties, representing a possible alternative to conventional therapies. Therefore, this study provides foreseeable indications about the utility of THEDES based on POH and IBU as strong candidates for novel active pharmaceutical systems.
Collapse
Affiliation(s)
- Eduardo Silva
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; (E.S.); (R.L.R.)
- ICVS/3B’s PT Government Associated Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Filipe Oliveira
- LAQV-REQUIMTE, Chemistry Department, Faculty of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal;
| | - Joana M. Silva
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; (E.S.); (R.L.R.)
- ICVS/3B’s PT Government Associated Laboratory, University of Minho, 4805-017 Guimarães, Portugal
- Correspondence: (J.M.S.); (A.R.C.D.)
| | - Ana Matias
- Nutraceuticals and Bioactives Process Technology Laboratory, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal;
| | - Rui L. Reis
- 3B’s Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal; (E.S.); (R.L.R.)
- ICVS/3B’s PT Government Associated Laboratory, University of Minho, 4805-017 Guimarães, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE, Chemistry Department, Faculty of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal;
- Correspondence: (J.M.S.); (A.R.C.D.)
| |
Collapse
|
11
|
Saibabu V, Fatima Z, Ahmad K, Khan LA, Hameed S. Octyl gallate triggers dysfunctional mitochondria leading to ROS driven membrane damage and metabolic inflexibility along with attenuated virulence in Candida albicans. Med Mycol 2020; 58:380-392. [PMID: 31135913 DOI: 10.1093/mmy/myz054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Recently the high incidence of worldwide Candida infections has substantially increased. The growing problem about toxicity of antifungal drugs and multidrug resistance aggravates the need for the development of new effective strategies. Natural compounds in this context represent promising alternatives having potential to be exploited for improving human health. The present study was therefore designed to evaluate the antifungal effect of a naturally occurring phenolic, octyl gallate (OG), on Candida albicans and to investigate the underlying mechanisms involved. We demonstrated that OG at 25 μg/ml could effectively inhibit C. albicans. Mechanistic insights revealed that OG affects mitochondrial functioning as Candida cells exposed to OG did not grow on non-fermentable carbon sources. Dysfunctional mitochondria triggered generation of reactive oxygen species (ROS), which led to membrane damage mediated by lipid peroxidation. We explored that OG inhibited glucose-induced reduction in external pH and causes decrement in ergosterol levels by 45%. Furthermore, OG impedes the metabolic flexibility of C. albicans by inhibiting the glyoxylate enzyme isocitrate lyase, which was also confirmed by docking analysis. Additionally, OG affected virulence traits such as morphological transition and cell adherence. Furthermore, we depicted that OG not only prevented biofilm formation but eliminates the preformed biofilms. In vivo studies with Caenorhabditis elegans nematode model confirmed that OG could enhance the survival of C. elegans after infection with Candida. Toxicity assay using red blood cells showed only 27.5% haemolytic activity. Taken together, OG is a potent inhibitor of C. albicans that warrants further structural optimization and pharmacological investigations.
Collapse
Affiliation(s)
- Venkata Saibabu
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Kamal Ahmad
- Center for Interdisciplinary Research, Jamia Millia Islamia, New Delhi-110025, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
12
|
Singh S, Fatima Z, Ahmad K, Hameed S. Repurposing of respiratory drug theophylline against Candida albicans: mechanistic insights unveil alterations in membrane properties and metabolic fitness. J Appl Microbiol 2020; 129:860-875. [PMID: 32320111 DOI: 10.1111/jam.14669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Abstract
AIMS Drug repurposing is an attractive chemotherapeutic strategy that serves to make up for the inadequacy of current antifungal drugs. The present study aims to repurpose theophylline (THP) against Candida albicans. THP is a methylxanthine derived from cocoa beans and tea extracts, generally used as the first-line drug for asthma and other respiratory disorders. METHODS AND RESULTS We investigated the antifungal activity of THP against C. albicans and non-albicans species. Mechanistic insights revealed that THP induces membrane damage. Enhanced ionic disturbances and depleted ergosterol levels with the concomitant rise in membrane fluidity due to elevated flippase activity confirmed the membrane damaging effect. THP impeded the metabolic adaptability of C. albicans by inhibiting malate synthase and isocitrate lyase enzymes of the glyoxylate cycle. In vivo efficacy of THP was depicted by increased survival of C. albicans infected Caenorhabditis elegans model. CONCLUSIONS This study elucidates the antifungal potential of THP with mechanistic insights. SIGNIFICANCE AND IMPACT OF THE STUDY This study unveils the antifungal potential of THP, a known respiratory drug that can be further utilized for a wider range of applications such as combating fungal infections. The effect of THP with the known antifungal drugs can be exploited in the combinatorial drug approach for treating candidiasis.
Collapse
Affiliation(s)
- S Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Z Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - K Ahmad
- Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - S Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| |
Collapse
|
13
|
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S. Potential Antifungal Targets Based on Glucose Metabolism Pathways of Candida albicans. Front Microbiol 2020; 11:296. [PMID: 32256459 PMCID: PMC7093590 DOI: 10.3389/fmicb.2020.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, fungal infections have become a serious health problem. Candida albicans are considered as the fourth most common isolates associated with approximately 40% mortality in bloodstream infections among hospitalized patients. Due to various limitations of classical antifungals used currently, such as limited kinds of drugs, inevitable toxicities, and high price, there is an urgent need to explore new antifungal agents based on novel targets. Generally, nutrient metabolism is involved with fungal virulence, and glucose is one of the important nutrients in C. albicans. C. albicans can obtain and metabolize glucose through a variety of pathways; in theory, many enzymes in these pathways can be potential targets for developing new antifungal agents, and several studies have confirmed that compounds which interfere with alpha-glucosidase, acid trehalase, trehalose-6-phosphate synthase, class II fructose bisphosphate aldolases, and glucosamine-6-phosphate synthase in these pathways do have antifungal activities. In this review, the glucose metabolism pathways in C. albicans, the potential antifungal targets based on these pathways, and some compounds which have antifungal activities by inhibiting several enzymes in these pathways are summarized. We believe that our review will be helpful to the exploration of new antifungal drugs with novel antifungal targets.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zewen Zhang
- Department of Imaging Medicine and Nuclear Medicine, Qilu Medical College, Shandong University, Jinan, China
| | - Zuozhong Chen
- Department of Pharmacy, Zibo Central Hospital, Zibo, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shan Su
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Venkata S, Zeeshan F, Kamal A, Luqman AK, Saif H. Efficiency of vanillin in impeding metabolic adaptability and virulence of Candida albicans by inhibiting glyoxylate cycle, morphogenesis, and biofilm formation. Curr Med Mycol 2020; 6:1-8. [PMID: 32420501 PMCID: PMC7217250 DOI: 10.18502/cmm.6.1.2501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background and Purpose Candida albicans is the fourth most common cause of nosocomial fungal infections across the world. The current drug regimens are suffering from such drawbacks as drug resistance, toxicity, and costliness; accordingly, they highlight the need for the discovery of novel drug agents. The metabolic adaptability under low-carbon conditions and expression of functional virulence traits mark the success of pathogens to cause infection. The metabolic pathways, such as glyoxylate cycle (GC), enable C. albicans to survive under glucose-deficient conditions prevalent in the hostile niche. Therefore, the key enzymes, namely isocitrate lyase (ICL) and malate synthase (MLS), represent attractive agents against C. albicans. Similarly, virulence traits, such as morphogenesis and biofilm formation, are the crucial determinants of C. albicans pathogenicity. Regarding this, the present study was conducted to uncover the role of vanillin (Van), a natural food flavoring agent, in inhibiting GC, yeast-to-hyphal transition, and biofilm formation in human fungal pathogen C. albicans. Materials and Methods For the determination of hypersensitivity under low-glucose conditions, phenotypic susceptibility assay was utilized. In addition, enzyme activities were estimated based on crude extracts while in-silico binding was confirmed by molecular docking. The assessment of morphogenesis was accomplished using hyphal-inducing media, and biofilm formation was estimated using calcofluor staining, MTT assay, and biomass measurement. Additionally, the in vivo efficacy of Van was demonstrated using Caenorhabditis elegans nematode model. Results Based on the results, Van was found to be a potent GC inhibitor that phenocopied ICL1 deletion mutant and displayed hypersensitivity under low-carbon conditions. Accordingly, Van facilitated the inhibition of ICL and MLS activities in vitro. Molecular docking analyses revealed the in-silico binding affinity of Van with Icl1p and Mls1p. Those analyses were also confirmative of the binding of Van to the active sites of both proteins with better binding energy in comparison to their known inhibitors. Furthermore, Van led to the attenuation of such virulence traits as morphogenesis, biofilm formation, and cell adherence. Finally, the antifungal efficacy of Van was demonstrated by the enhanced survival of C. elegans with Candida infection. The results also confirmed negligible hemolytic activity on erythrocytes. Conclusion As the findings of the present study indicated, Van is a persuasive natural compound that warrants further attention to exploit its anticandidal potential.
Collapse
Affiliation(s)
- Saibabu Venkata
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fatima Zeeshan
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| | - Ahmad Kamal
- Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | | | - Hameed Saif
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| |
Collapse
|
15
|
Bae J, Cho E, Park JS, Won TH, Seo SY, Oh DC, Oh KB, Shin J. Isocadiolides A-H: Polybrominated Aromatics from a Synoicum sp. Ascidian. JOURNAL OF NATURAL PRODUCTS 2020; 83:429-437. [PMID: 31967465 DOI: 10.1021/acs.jnatprod.9b00968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isocadiolides A-H (1-8) and cadiolide N (9), new polybrominated aromatic compounds, were isolated from a Korean Synoicum sp. ascidian. On the basis of the results of extensive spectroscopic analyses, these compounds possessed tris-bromohydroxyphenyl moieties as a common structural motif, while their cores varied [cyclopentenedione (1-5), dihydrofuran (6 and 7), pyranone (8), and furanone (9)], reflecting different extents of rearrangement and oxidation. Several of these compounds exhibited weak antibacterial activities and moderate abilities to inhibit the microbial enzymes sortase A and isocitrate lyase.
Collapse
Affiliation(s)
- Jongkyoon Bae
- Natural Products Research Institute, College of Pharmacy , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-742 , Korea
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Science , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-921 , Korea
| | - Jae Sung Park
- Natural Products Research Institute, College of Pharmacy , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-742 , Korea
| | - Tae Hyung Won
- Natural Products Research Institute, College of Pharmacy , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-742 , Korea
| | - Su-Yuan Seo
- Natural History Museum , Ehwa Womans University , 52 Ewhayeodae-gil , Seodaemun, Seoul 03760 , Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-742 , Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-921 , Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy , Seoul National University , San 56-1 , Sillim, Gwanak, Seoul 151-742 , Korea
| |
Collapse
|
16
|
Zeitz MA, Tanveer Z, Openshaw AT, Schmidt M. Genetic Regulators and Physiological Significance of Glycogen Storage in Candida albicans. J Fungi (Basel) 2019; 5:jof5040102. [PMID: 31671578 PMCID: PMC6958490 DOI: 10.3390/jof5040102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 01/31/2023] Open
Abstract
The dimorphic human fungal pathogen C. albicans has broad metabolic flexibility that allows it to adapt to the nutrient conditions in different host habitats. C. albicans builds large carbohydrate stores (glycogen) at the end of exponential growth and begins consumption of stored carbohydrates when nutrients become limiting. The expression of genes required for the successful transition between host environments, including the factors controlling glycogen content, is controlled by protein kinase A signaling through the transcription factor Efg1. In addition to the inability to transition to hyphal growth, C. albicans efg1 mutants have low glycogen content and reduced long-term survival, suggesting that carbohydrate storage is required for viability during prolonged culture. To test this assumption, we constructed a glycogen-deficient C. albicans mutant and assessed its viability during extended culture. Pathways and additional genetic factors controlling C. albicans glycogen synthesis were identified through the screening of mutant libraries for strains with low glycogen content. Finally, a part of the Efg1-regulon was screened for mutants with a shortened long-term survival phenotype. We found that glycogen deficiency does not affect long-term survival, growth, metabolic flexibility or morphology of C. albicans. We conclude that glycogen is not an important contributor to C. albicans fitness.
Collapse
Affiliation(s)
- Marcus A Zeitz
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | - Zainab Tanveer
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | - Anatole T Openshaw
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| | - Martin Schmidt
- Department of Biochemistry and Nutrition, College of Osteopathic Medicine, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA.
| |
Collapse
|
17
|
Retrograde signaling disruption influences ABC superfamily transporter, ergosterol and chitin levels along with biofilm formation in Candida albicans. J Mycol Med 2019; 29:210-218. [DOI: 10.1016/j.mycmed.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
|
18
|
Hans S, Fatima Z, Hameed S. Magnesium deprivation affects cellular circuitry involved in drug resistance and virulence in Candida albicans. J Glob Antimicrob Resist 2019; 17:263-275. [PMID: 30659981 DOI: 10.1016/j.jgar.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/28/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Candida albicans has to struggle for the limited micronutrients present in the hostile host niche, including magnesium (Mg). The aim of this study was to examine the effect of Mg deprivation on drug resistance mechanisms and virulence traits of C. albicans. METHODS The drug susceptibility of C. albicans strain SC5314 was determined by broth microdilution and spot assay. Efflux pump activity was measured using the substrate rhodamine 6G. Membrane intactness was studied by propidium iodide influx, and ergosterol levels were determined by the alcoholic KOH method. Metabolic flexibility was examined by studying the activity of glyoxylate cycle enzymes. Virulence factors were assessed by yeast-to-hyphae transition, biofilm formation and cell adherence. An in vivo study was also performed in a Caenorhabditis elegans infection model. RESULTS Mg chelation leads to potentiation of membrane-targeting antifungals. The role of Mg on membrane homeostasis was explored and significant differences in ergosterol levels were found. Interestingly, it was also observed that Mg deprivation impedes the metabolic flexibility of C. albicans SC5314 by inhibiting glyoxylate cycle enzymes. Furthermore, Mg deprivation inhibited potential virulence traits, including morphological transition, biofilm formation and buccal epithelial cell adherence. All of the disrupted gene targets were validated by reverse transcription PCR. Lastly, enhanced survival of C. elegans infected with C. albicans SC5314 under Mg deprivation was observed. CONCLUSION In view of the restricted growth of C. albicans in a Mg-deficient environment, approaches could be utilised to boost the effectiveness of existing antifungals thereby improving the management of fungal infections.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana 122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana 122413, India.
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana 122413, India.
| |
Collapse
|
19
|
Singh S, Fatima Z, Ahmad K, Hameed S. Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism. PLoS One 2018; 13:e0203079. [PMID: 30157240 PMCID: PMC6114893 DOI: 10.1371/journal.pone.0203079] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Among the several mechanisms of multidrug resistance (MDR), overexpression of drug efflux pumps CaCdr1p and CaMdr1p belonging to ATP binding cassette (ABC) and major facilitator superfamily (MFS) respectively remain the predominant mechanisms of candidal infections. Therefore inhibiting or modulating the function of these transporters continues to draw attention as effective strategy to combat MDR. We have previously reported the antifungal potential of Geraniol (Ger), a natural monoterpenoid from Palmarosa oil, against Candida albicans. Herein, we explored the fungicidal nature of Ger. The Rhodamine 6G (R6G) and Nile red accumulation confirms the specific effect on CaCdr1p. Mechanistic insights with Candida cells overexpressing CaCdr1p and CaMdr1p revealed that Ger specifically modulates CaCdr1p activity. Kinetic studies further unraveled the competitive inhibition of Ger for R6G efflux as evident from increased apparent Km without affecting Vmax value. The effect of Ger on CaCdr1p was substantiated by molecular docking analyses, which depicted in-silico binding affinity of Ger with CaCdr1p and explored that Ger binds to the active site of CaCdr1p with higher binding energy. Although RT-PCR and western blot revealed no change in expressions of CDR1 and CaCdr1p, confocal microscopy images however depicted CaCdr1p mislocalization in presence of Ger. Interestingly, Ger was synergistic (FICI<0.5) with fluconazole (FLC) which is a well known antifungal drug. Furthermore, Ger sensitizes the FLC sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and led to abrogated R6G efflux and depleted ergosterol. Furthermore, Rhodamine B labeling demonstrates altered mitochondrial potential with Ger which suggest possible linkage of dysfunctional mitochondria with CaCdr1p activity. We also estimated phenotypic virulence marker extracellular phospholipase activity which was considerably diminished along with inhibited cell adherence and biofilm biomass. Lastly, antifungal efficacy of Ger was demonstrated by enhanced survival of Caenorhabditis elegans model and negligible hemolytic activity (20%). Together, modulation of efflux pump activity by Ger and FLC synergism represent a promising approach for combinatorial treatment of candidiasis.
Collapse
Affiliation(s)
- Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Kamal Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| |
Collapse
|
20
|
Ahmad K, Hafeez ZB, Bhat AR, Rizvi MA, Thakur SC, Azam A, Athar F. Antioxidant and apoptotic effects of Callistemon lanceolatus leaves and their compounds against human cancer cells. Biomed Pharmacother 2018; 106:1195-1209. [PMID: 30119188 DOI: 10.1016/j.biopha.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
Callistemon lanceolatus (Myrtaceae) has been utilized in folk medicine and its pharmacological properties are widely studied. Phytochemicals are effectively recognized as bases of pharmacologically potent drugs for the development of anticancer therapeutics. The free radical scavenging potential of numerous extracts of C. lanceolatus leaves, Hexane leaf extract (HLE), Chloroform leaf extract (CLE), Ethyl acetate leaf extract (ELE), Methanol leaf extract (MLE), and Aqueous leaf extract (ALE)) were determined by Biochemical assay. We evaluated the anticancer activity of C. lanceolatus leaves extracts against different human cancer cell lines viz liver cancer cells (HepG2), breast cancer cells (MCF7), and normal human embryonic kidney (HEK 293) cell line. The ELE and MLE extracts of C. lanceolatus leaves showed potential antiproliferative effects on HepG2 cells. On the basis of free radical scavenging potential and cytotoxicity studies, ELE and MLE extracts of C. lanceolatus leaves are further evaluated in detail for numerous biological activities. ELE and MLE extracts reduced the cell growth, ROS generation, lowering the potential of cell migration and inhibits the metastatic activity in HepG2 cell lines. ELE and MLE extracts treated HepG2 cells showed down-regulation of STAT3 and up-regulation of p53 and inhibition of cdk2 and cyclin A activity. Phytochemicals analysis have shown that the ELE and MLE possess some anticancer compounds like 4-Fluoro-2-trifluoromethylbenzoic acid, neopentyl ester; fumaric acid, di(pent-4-en-2-yl) ester; 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one and 2-Furancarboxaldehyde,5-(hydroxymethyl). Molecular docking results demonstrate that interactions of compounds present in ELE and MLE extracts with the SH2 domain of STAT3, might be responsible for their inhibitory effects. We have further concluded that the ELE and MLE extracts of C. lanceolatus arrests the cells at S and G2/M phase and subsequently induced cell death by regulating the DNA damage in HepG2 cells.
Collapse
Affiliation(s)
- Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Abdul Roof Bhat
- Department of Chemistry, Sripartap College, Srinagar, Jammu and Kashmir, 190001, India
| | | | - Sonu C Thakur
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, 110025, India
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
21
|
Liu X, Ma Z, Zhang J, Yang L. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614183. [PMID: 29445739 PMCID: PMC5763084 DOI: 10.1155/2017/4614183] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022]
Abstract
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.
Collapse
Affiliation(s)
- Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxiao Zhang
- Department of Emergency, The Second Hospital of Jilin University, Changchun 130041, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|