1
|
Hossen MS, Islam MN, Pramanik MEA, Rahman MH, Amin MA, Antora ST, Sraboni FS, Chowdhury RN, Farha N, Sathi AA, Sadaf S, Banna F, Karim MR, Akter N, Gofur MR, Islam MS, Miah MMZ, Akhter M, Islam MS, Hasan MS, Fahmin F, Rahman MM, Basak PM, Sonnyashi AK, Das HS, Al Mahtab M, Akbar SMF. Molecular Characterization and Potential Inhibitors Prediction of Protein Arginine Methyltransferase-2 in Carcinoma: An Insight from Molecular Docking, ADMET Profiling and Molecular Dynamics Simulation Studies. Euroasian J Hepatogastroenterol 2024; 14:160-171. [PMID: 39802857 PMCID: PMC11714102 DOI: 10.5005/jp-journals-10018-1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis. Materials and methods An in silico method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain. Consequently, it was determined that ligand compounds may be the source of co-crystallized complexes containing additional PRMTs. Possible PRMT2 inhibitor compounds are found by using S-adenosyl methionine (SAM), a methyl group donor, as a positive control. Results Protein arginine methyltransferases are associated with a range of physiological processes, including as splicing, proliferation, regulation of the cell cycle, differentiation, and signaling of DNA damage. These functional capacities are also related to carcinogenesis and metastasis-several forms of PRMT have been cited in the literature. These include PRMT-1, PRMT-2, and PRMT-5. Among these, the role of PRMT-2 has been shown in breast cancer and hepatocellular carcinoma. To gain more insights into the role of PRMT2 in cancer pathogenesis, we opted to characterize tertiary structure utilizing an in silico approach. The majority of PRMTs in the PDB have a structurally conserved catalytic core domain. Thus, ligand compounds were identified as a possible source of co-crystallized complexes of other PRMTs. The SAM, a methyl group donor, is used as a positive control in order to identify potential inhibitor compounds of PRMT2 by the virtual screening method. We hypothesized that an inhibitor for other PRMTs could alter PRMT2 activities. Out of 45 inhibitor compounds, we ultimately identified three potential inhibitor compounds based on the results of the pharmacokinetics and binding affinity studies. These compounds are identified as 3BQ (PubChem CID: 77620540), 6DX (PubChem CID: 124222721), and TDU (PubChem CID: 53346504). Their binding affinities are -8.5 kcal/mol, -8.1 kcal/mol, and -8.8 kcal/mol, respectively. These compounds will be further investigated to determine the binding stability and compactness using molecular dynamics simulations on a 100 ns time scale. In vitro and in vivo studies may be conducted with these three compounds, and we think that focusing on them might lead to the creation of a PRMT2 inhibitor. Conclusion Three strong inhibitory compounds that were non-carcinogenic also have drug-like properties. By using desirable parameters in root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), molecular surface area (MolSA), and intermolecular hydrogen bonding, complexes verified structural stability and compactness over the 100 ns time frame. How to cite this article Hossen MS, Islam MN, Pramanik MEA et al. Molecular Characterization and Potential Inhibitors Prediction of Protein Arginine Methyltransferase-2 (PRMT2) in Carcinoma: An Insight from Molecular Docking, ADMET Profiling and Molecular Dynamics Simulation Studies. Euroasian J Hepato-Gastroenterol 2024;14(2):160-171.
Collapse
Affiliation(s)
- Md Sahadot Hossen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nur Islam
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, People's Republic of China; Department of Pharmacy, Manarat International University, Gulshan, Dhaka, Bangladesh
| | - Md Enayet A Pramanik
- Department of Entomology, On-Farm Research Division, Bangladesh Agricultural Research Institute, Terokhadia, Rajshahi, Bangladesh
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Al Amin
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Mawlana Bhashani Science and Technology University, Tangail, Santosh, Bangladesh
| | - Saraban T Antora
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Farzana S Sraboni
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Rifah N Chowdhury
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka (DU), Mokarram Hussain Khundker Bhaban, University St, Dhaka, Bangladesh
| | - Nazia Farha
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Amina A Sathi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Samia Sadaf
- Department of Biology, Development Biology Laboratory, Clarkson University, Potsdam, New York, United States of America
| | - Farjana Banna
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Islamic University, Kushtia, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, School of Engineering, Science and Technology, Manarat International University, Gulshan, Dhaka, Bangladesh
| | - Nasrin Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Royhan Gofur
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Shariful Islam
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - M Morsed Z Miah
- Department of Hematology, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Mira Akhter
- Department of Clinical Pathology, Rajshahi Medical College Hospital, Rajshahi, Bangladesh
| | - Md Shariful Islam
- Department of Ortho-Surgery, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Md Sharif Hasan
- Department of Cardiology, Mymensingh Medical College Hospital, Mymensingh, Bangladesh
| | - Fahmida Fahmin
- Department of Paediatric, Mymensingh Medical College Hospital, Mymensingh, Bangladesh
| | - Mohammad M Rahman
- Department of Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Prabir M Basak
- Department of Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Amio K Sonnyashi
- Department of Medicine, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Haimanti S Das
- Department of Virology, Rajshahi Medical College, Rajshahi, Bangladesh
| | - Mamun Al Mahtab
- Department of Interventional Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbagh, Dhaka, Bangladesh
| | - Sheikh MF Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
2
|
Tong C, Chang X, Qu F, Bian J, Wang J, Li Z, Xu X. Overview of the development of protein arginine methyltransferase modulators: Achievements and future directions. Eur J Med Chem 2024; 267:116212. [PMID: 38359536 DOI: 10.1016/j.ejmech.2024.116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Protein methylation is a post-translational modification (PTM) that organisms undergo. This process is considered a part of epigenetics research. In recent years, there has been an increasing interest in protein methylation, particularly histone methylation, as research has advanced. Methylation of histones is a dynamic process that is subject to fine control by histone methyltransferases and demethylases. In addition, many non-histone proteins also undergo methylation, and these modifications collectively regulate physiological phenomena, including RNA transcription, translation, signal transduction, DNA damage response, and cell cycle. Protein arginine methylation is a crucial aspect of protein methylation, which plays a significant role in regulating the cell cycle and repairing DNA. It is also linked to various diseases. Therefore, protein arginine methyltransferases (PRMTs) that are involved in this process have gained considerable attention as a potential therapeutic target for treating diseases. Several PRMT inhibitors are in phase I/II clinical trials. This paper aims to introduce the structure, biochemical functions, and bioactivity assays of PRMTs. Additionally, we will review the structure-function of currently popular PRMT inhibitors. Through the analysis of various data on known PRMT inhibitors, we hope to provide valuable assistance for future drug design and development.
Collapse
Affiliation(s)
- Chao Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Xiujin Chang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Fangui Qu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jinlei Bian
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| | - Xi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjin, 211198, China.
| |
Collapse
|
3
|
Rasheed S, Bouley RA, Yoder RJ, Petreaca RC. Protein Arginine Methyltransferase 5 (PRMT5) Mutations in Cancer Cells. Int J Mol Sci 2023; 24:6042. [PMID: 37047013 PMCID: PMC10094674 DOI: 10.3390/ijms24076042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Arginine methylation is a form of posttranslational modification that regulates many cellular functions such as development, DNA damage repair, inflammatory response, splicing, and signal transduction, among others. Protein arginine methyltransferase 5 (PRMT5) is one of nine identified methyltransferases, and it can methylate both histone and non-histone targets. It has pleiotropic functions, including recruitment of repair machinery to a chromosomal DNA double strand break (DSB) and coordinating the interplay between repair and checkpoint activation. Thus, PRMT5 has been actively studied as a cancer treatment target, and small molecule inhibitors of its enzymatic activity have already been developed. In this report, we analyzed all reported PRMT5 mutations appearing in cancer cells using data from the Catalogue of Somatic Mutations in Cancers (COSMIC). Our goal is to classify mutations as either drivers or passengers to understand which ones are likely to promote cellular transformation. Using gold standard artificial intelligence algorithms, we uncovered several key driver mutations in the active site of the enzyme (D306H, L315P, and N318K). In silico protein modeling shows that these mutations may affect the affinity of PRMT5 for S-adenosylmethionine (SAM), which is required as a methyl donor. Electrostatic analysis of the enzyme active site shows that one of these mutations creates a tunnel in the vicinity of the SAM binding site, which may allow interfering molecules to enter the enzyme active site and decrease its activity. We also identified several non-coding mutations that appear to affect PRMT5 splicing. Our analyses provide insights into the role of PRMT5 mutations in cancer cells. Additionally, since PRMT5 single molecule inhibitors have already been developed, this work may uncover future directions in how mutations can affect targeted inhibition.
Collapse
Affiliation(s)
- Shayaan Rasheed
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH 43210, USA
- Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Renee A. Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, OH 43302, USA
| | - Ryan J. Yoder
- Department of Chemistry and Biochemistry, The Ohio State University, Marion, OH 43302, USA
| | - Ruben C. Petreaca
- James Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH 43210, USA
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| |
Collapse
|
4
|
Zhang Q, Zhang L, Jin J, Fan Y, Wang X, Hu H, Ye X, Wang L, Cao C, Ye F. Identification of PRMT5 inhibitors with novel scaffold structures through virtual screening and biological evaluations. J Mol Model 2022; 28:184. [PMID: 35680707 DOI: 10.1007/s00894-022-05125-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5), an important member in PRMT family, has been validated as a promising anticancer target. In this study, through the combination of virtual screening and biological experiments, we have identified two PRMT5 inhibitors with novel scaffold structures. Among them, compound Y2431 showed moderate activity with IC50 value of 10.09 μM and displayed good selectivity against other methyltransferases. The molecular docking analysis and molecular dynamics (MD) simulations suggested that the compound occupied the substrate-arginine binding site. Furthermore, Y2431 exhibited anti-proliferative activity to leukemia cells by inducing cell cycle arrest. Overall, the hit compound could provide a novel scaffold for further optimization of small-molecule PRMT5 inhibitors.
Collapse
Affiliation(s)
- Qian Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lun Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaohua Fan
- Department of Surgery, The Second Affiliated Hospital of Jia Xing University, Jiaxing, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jia Xing University, Jiaxing, China
| | - Haofeng Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoqing Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materta Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jia Xing University, Jiaxing, China.
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
5
|
Yang Z, Xiao T, Li Z, Zhang J, Chen S. Novel Chemicals Derived from Tadalafil Exhibit PRMT5 Inhibition and Promising Activities against Breast Cancer. Int J Mol Sci 2022; 23:ijms23094806. [PMID: 35563196 PMCID: PMC9103191 DOI: 10.3390/ijms23094806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer seriously endangers women’s health worldwide. Protein arginine methyltransferase 5 (PRMT5) is highly expressed in breast cancer and represents a potential druggable target for breast cancer treatment. However, because the currently available clinical PRMT5 inhibitors are relatively limited, there is an urgent need to develop new PRMT5 inhibitors. Our team previously found that the FDA-approved drug tadalafil can act as a PRMT5 inhibitor and enhance the sensitivity of breast cancer patients to doxorubicin treatment. To further improve the binding specificity of tadalafil to PRMT5, we chemically modified tadalafil, and designed three compounds, A, B, and C, based on the PRMT5 protein structure. These three compounds could bind to PRMT5 through different binding modes and inhibit histone arginine methylation. They arrested the proliferation and triggered the apoptosis of breast cancer cells in vitro and also promoted the antitumor effects of the chemotherapy drugs cisplatin, doxorubicin, and olaparib in combination regimens. Among them, compound A possessed the highest potency. Finally, the anti-breast cancer effects of PRMT5 inhibitor A and its ability to enhance chemosensitivity were further verified in a xenograft mouse model. These results indicate that the new PRMT5 inhibitors A, B, and C may be potential candidates for breast cancer treatment.
Collapse
Affiliation(s)
- Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
| | - Tian Xiao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
| | - Zezhi Li
- Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China;
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an 710032, China; (Z.Y.); (T.X.)
- Correspondence: (J.Z.); (S.C.)
| | - Suning Chen
- Department of Pharmacy, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (J.Z.); (S.C.)
| |
Collapse
|
6
|
Bathula R, Lanka G, Chakravarty M, Somadi G, Sivan SK, Jain A, Potlapally SR. Structural insight into PRMT5 inhibitors through amalgamating pharmacophore-based virtual screening, ADME toxicity, and binding energy studies to identify new inhibitors by molecular docking. Struct Chem 2022. [DOI: 10.1007/s11224-022-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yuan Y, Nie H. Protein arginine methyltransferase 5: a potential cancer therapeutic target. Cell Oncol (Dordr) 2021; 44:33-44. [PMID: 33469838 DOI: 10.1007/s13402-020-00577-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PRMT5 is a type II protein arginine methyltransferase that methylates histone or non-histone proteins. Arginine methylation by PRMT5 has been implicated in gene transcription, ribosome biogenesis, RNA transport, pre-mRNA splicing and signal transduction. High expression of PRMT5 has been observed in various cancers and PRMT5 overexpression has been reported to improve cancer cell survival, proliferation, migration and metabolism and to inhibit cancer cell apoptosis. In addition, PRMT5 has been found to be required for cancer stem cell survival, self-renewal and differentiation. Several microRNAs have been shown to regulate PRMT5 expression. As PRMT5 has oncogene-like properties, several PRMT5 inhibitors have been used to explore their efficacy as potential drugs for different types of cancer, and three of them are now being tested in clinical trials. CONCLUSIONS In this review, we summarize current knowledge on the role of PRMT5 in cancer development and progression, including its functions and underlying mechanisms. In addition, we highlight the rapid development of PRMT5 inhibitors and summarize ongoing clinical trials for cancer therapy. By affecting both tumor cells and the tumor microenvironment, PRMT5 inhibitors may serve as effective anti-cancer agents, especially when combined with immune therapies.
Collapse
Affiliation(s)
- Yuanyang Yuan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China.
| |
Collapse
|
8
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
9
|
Nagai Y, Ji MQ, Zhu F, Xiao Y, Tanaka Y, Kambayashi T, Fujimoto S, Goldberg MM, Zhang H, Li B, Ohtani T, Greene MI. PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185 erbB2/neu Tumor Immunotherapy. Front Immunol 2019; 10:174. [PMID: 30800128 PMCID: PMC6375878 DOI: 10.3389/fimmu.2019.00174] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subpopulation of T cells that are specialized in suppressing immune responses. Here we show that the arginine methyl transferase protein PRMT5 can complex with FOXP3 transcription factors in Tregs. Mice with conditional knock out (cKO) of PRMT5 expression in Tregs develop severe scurfy-like autoimmunity. In these PRMT5 cKO mice, the spleen has reduced numbers of Tregs, but normal numbers of Tregs are found in the peripheral lymph nodes. These peripheral Tregs that lack PRMT5, however, display a limited suppressive function. Mass spectrometric analysis showed that FOXP3 can be di-methylated at positions R27, R51, and R146. A point mutation of Arginine (R) 51 to Lysine (K) led to defective suppressive functions in human CD4 T cells. Pharmacological inhibition of PRMT5 by DS-437 also reduced human Treg functions and inhibited the methylation of FOXP3. In addition, DS-437 significantly enhanced the anti-tumor effects of anti-erbB2/neu monoclonal antibody targeted therapy in Balb/c mice bearing CT26Her2 tumors by inhibiting Treg function and induction of tumor immunity. Controlling PRMT5 activity is a promising strategy for cancer therapy in situations where host immunity against tumors is attenuated in a FOXP3 dependent manner.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fuxiang Zhu
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology & Immunology, CAS Center for Excellence in Molecular Cell Science, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Xiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Li
- The Department of Immunology and Microbiology & Shanghai, Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Takuya Ohtani
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Wang Y, Hu W, Yuan Y. Protein Arginine Methyltransferase 5 (PRMT5) as an Anticancer Target and Its Inhibitor Discovery. J Med Chem 2018; 61:9429-9441. [PMID: 29870258 DOI: 10.1021/acs.jmedchem.8b00598] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PRMT5 is a major enzyme responsible for symmetric dimethylation of arginine residues on both histone and non-histone proteins, regulating many biological pathways in mammalian cells. PRMT5 has been suggested as a therapeutic target in a variety of diseases including infectious disease, heart disease, and cancer. Many PRMT5 inhibitors have been discovered in the past 5 years, and one entered clinical trial in 2015 for the treatment of solid tumor and mantle cell lymphoma (MCL). The aim of this review is to summarize the current understanding of the roles of PRMT5 in cancer and the discovery of PRMT5 enzymatic inhibitors. By reviewing the structure-activity relationship (SAR) of known inhibitors of PRMT5, we hope to provide guidance for future drug designs and inhibitor optimization. Opportunities and limitations of PRMT5 inhibitors for the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Yuanxiang Wang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Wenhao Hu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou 510006 , China
| |
Collapse
|
11
|
Zhu K, Jiang C, Tao H, Liu J, Zhang H, Luo C. Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations. Bioorg Med Chem Lett 2018; 28:1476-1483. [PMID: 29628326 DOI: 10.1016/j.bmcl.2018.03.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022]
Abstract
As one of the most promising anticancer target in protein arginine methyltransferase (PRMT) family, PRMT5 has been drawing more and more attentions, and many efforts have been devoted to develop its inhibitors. In this study, three PRMT5 inhibitors (9, 16, and 23) with novel scaffolds were identified by performing pharmacophore- and docking-based virtual screening combined with in vitro radiometric-based scintillation proximity assay (SPA). Substructure search based on the scaffold of the most active 9 afforded 26 additional analogues, and SPA results indicated that two analogues (9-1 and 9-2) showed increased PRMT5 inhibitory activity compared with the parental compound. Resynthesis of 9, 9-1, and 9-2 confirmed their PRMT5 enzymatic inhibition activity. In addition, compound 9-1 displayed selectivity against PRMT5 over other key homological members (PRMT1 and CARM1 (PRMT4)). While the structure-activity relationship (SAR) of this series of compounds was discussed to provide clues for further structure optimization, the probable binding modes of active compounds were also probed by molecular docking and molecular dynamics simulations. Finally, the antiproliferative effect of 9-1 on MV4-11 leukemia cell line was confirmed and its impact on regulating the target gene of PRMT5 was also validated. The hit compounds identified in this work have provided more novel scaffolds for future hit-to-lead optimization of small-molecule PRMT5 inhibitors.
Collapse
Affiliation(s)
- Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Hongrui Tao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China
| | - Jingqiu Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, PR China.
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|