1
|
Zhang Q, Zhou Q, Li H. Action and mechanisms of neferine in inflammatory diseases (Review). Mol Med Rep 2025; 32:174. [PMID: 40242976 PMCID: PMC12046375 DOI: 10.3892/mmr.2025.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
Neferine is a bisbenzylisoquinoline alkaloid derived from the seed embryo of Nelumbo nucifera, a traditional Chinese medicine. It has been extensively studied for its therapeutic potential in various disease models. Extensive research has highlighted its diverse pharmacological activities, including antitumor, anti‑inflammatory, anti‑fibrosis, anti‑oxidative stress, anti‑platelet aggregation and anti‑arrhythmic effects. The present review, however, focuses on the anti‑inflammatory properties of neferine, emphasizing its fundamental mechanisms as demonstrated in both in vivo and in vitro studies. By critically evaluating its effect on inflammation and the underlying pathways, this review aims to provide a comprehensive understanding of the potential of neferine in the management of inflammatory diseases. Furthermore, it seeks to establish a foundational framework for the future development of neferine as a novel therapeutic agent for inflammatory conditions.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephropathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| | - Qiaoling Zhou
- Department of Nephropathy, Xiangya Hospital Central-South University, Changsha, Hunan 410028, P.R. China
| | - Huihui Li
- Department of Nephropathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P.R. China
| |
Collapse
|
2
|
Zhang P, Zhou Z, Yao J, Jiang Y, Lei H, Xie Z, Li J, Zhao X, Zhu L, Wan M, Liu L, Tang W. Effects of pesticide dichlorvos on liver injury in rats and related toxicity mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117747. [PMID: 39823667 DOI: 10.1016/j.ecoenv.2025.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Dichlorvos (DDVP) is an organophosphorus pesticide commonly utilized in agricultural production. Recent epidemiological studies suggest that exposure to DDVP correlates with an increased incidence of liver disease. However, data regarding the hepatotoxicity of DDVP remain limited. Additionally, the regulatory mechanisms underlying DDVP-induced liver injury have not been thoroughly investigated. In this study, we utilized Wistar rats and BRL-3A cells to establish in vivo and in vitro models for examining the effects of DDVP exposure on liver damage. Our findings indicate that DDVP impairs hepatocyte autophagy and increases ROS activity. RNA sequencing and metabolomic analyses revealed that the pathways affected by DDVP exposure in hepatocytes include ABC transporters and amino acid biosynthesis processes. Furthermore, targeting IRGM overexpression through hepatic portal vein injection of adeno-associated virus mitigated DDVP-induced liver injury. These results demonstrate that DDVP exposure induces liver damage in rats through mechanisms that are dependent on ROS and autophagy, at least in part by downregulating IRGM. Our study offers new insights into the molecular mechanisms of liver injury following organophosphate poisoning and suggests that IRGM may represent a novel therapeutic target for DDVP-induced liver injury.
Collapse
Affiliation(s)
- Pengcheng Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Zixian Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaqi Yao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuhong Jiang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Lei
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Xie
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Lu zhou, Sichuan 646000, China
| | - Juan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianlin Zhao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Gao M, Ge X, Li Y, Zheng G, Cai J, Yao J, Wang T, Gao Y, Yan Y, Chen Y, Pan Y, Hu P. Lysosomal dysfunction in carbon black-induced lung disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167200. [PMID: 37742976 DOI: 10.1016/j.scitotenv.2023.167200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.
Collapse
Affiliation(s)
- Mingtong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xiao Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Gege Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jiani Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tianyi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yichang Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuchen Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yinming Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Wang X, Wei Z, Hu P, Xia W, Liao Z, Assani I, Yang G, Pan Y. Optimization of Neferine Purification Based on Response Surface Methodology and Its Anti-Metastasis Mechanism on HepG2 Cells. Molecules 2023; 28:5086. [PMID: 37446748 DOI: 10.3390/molecules28135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer continues to be a focus of scientific research due to its low five-year survival rate. One of its main core issues is the high metastasis of cells, for which there is no effective treatment. Neferine was originally isolated from Plumula nelumbinis and demonstrated to have a good antitumor effect. In order to extract high-purity Neferine in a more efficient and environmentally friendly manner, response surface methodology (RSM) was used to optimize the isolation and purification procedures in this study. The extract conditions of a 7:3 ratio for the eluent of dichloromethane: methanol, 1:60 for the mass ratio of the extract amount: silica gel, and 3 mL/min of the elution flow rate were shown to be the optimal conditions. These conditions resulted in the highest yield of 6.13 mg per 66.60 mg of starting material, with productivity of 8.76% and purity of 87.04%. Compared with the previous methods, this method can prepare Neferine in large quantities more quickly. We subsequently evaluated the antitumor activity of the purified Neferine against HepG2 hepatic cancer cells. The purified Neferine was found to inhibit the proliferation of HepG2 cells through the CCK-8 assay, with an IC50 of 33.80 μM in 24 h, 29.47 μM in 48 h, 24.35 μM in 72 h and 2.78 μM in 96 h of treatment. Neferine at a concentration of 3 μM could significantly inhibit the migration and invasion abilities of the HepG2 cells in vitro. We also explored the mechanism of action of Neferine via Western blot. We showed that Neferine could reduce RhoA expression by effectively inhibiting the phosphorylation of MYPT1, thereby effectively exerting anti-metastasis activity against HepG2 cells. Thus, we have optimized the isolation procedures for highly pure Neferine by response surface methodology (RSM) in this study, and purified Neferine is shown to play an essential role in the anti-metastasis process of liver cancer cells. The Neferine purification procedure may make a wide contribution to the follow-up development of other anti-metastasis lead compounds.
Collapse
Affiliation(s)
- Xinzhu Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Weibo Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhixin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Israa Assani
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
5
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
6
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Zhu F, Li X, Tang X, Jiang J, Han Y, Li Y, Ma C, Liu Z, He Y. Neferine promotes the apoptosis of HNSCC through the accumulation of p62/SQSTM1 caused by autophagic flux inhibition. Int J Mol Med 2021; 48:124. [PMID: 33982791 PMCID: PMC8128420 DOI: 10.3892/ijmm.2021.4957] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common malignancies worldwide, often has a poor prognosis due to the associated metastasis and chemoresistance. Hence, the development of more effective chemotherapeutics is critical. Neferine, a bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (common name: Lotus), exerts antitumor effects by regulating apoptosis and autophagy pathways, making it a potential therapeutic option for HNSCC. In our study, it was revealed that neferine inhibited the growth and induced the apoptosis of HNSCC cells both in vitro and in vivo. Furthermore, the results revealed that neferine activated the ASK1/JNK pathway by increasing reactive oxygen species production, resulting in the subsequent induction of apoptosis and the regulation of canonical autophagy in HNSCC cells. Moreover, a novel pro‑apoptotic mechanism was described for neferine via the activation of caspase‑8 following the accumulation of p62, which was caused by autophagic flux inhibition. These findings provided insights into the mechanisms responsible for the anticancer effect of neferine, specifically highlighting the crosstalk that occured between apoptosis and autophagy, which was mediated by p62 in HNSCC. Hence, the neferine‑induced inhibition of autophagic flux may serve as the basis for a potential adjuvant therapy for HNSCC.
Collapse
Affiliation(s)
- Fengshuo Zhu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoguang Li
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiao Tang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Junjian Jiang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yu Han
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yinuo Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chunyue Ma
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yue He
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
8
|
Mondal A, Gandhi A, Fimognari C, Atanasov AG, Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur J Pharmacol 2019; 858:172472. [PMID: 31228447 DOI: 10.1016/j.ejphar.2019.172472] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Alkaloids are important chemical compounds that serve as a rich source for drug discovery. Numerous alkaloids screened from medicinal plants and herbs showed antiproliferative and anticancer effects on wide category of cancers both in vitro and in vivo. Vinblastine, vinorelbine, vincristine, and vindesine have already been successfully developed as anticancer drugs. The available and up-to-date information on the ethnopharmacological uses in traditional medicine, phytochemistry, pharmacology and clinical utility of alkaloids were collected using various resources (PubMed, ScienceDirect, Google Scholar and Springerlink). In this article, we provide a comprehensive and critical overview on naturally-occurring alkaloids with anticancer activities and highlight the molecular mechanisms of action of these secondary metabolites. Furthermore, this review also presents a summary of synthetic derivatives and pharmacological profiles useful to researchers for the therapeutic development of alkaloids. Based on the literature survey compiled in this review, alkaloids represent an important group of anticancer drugs of plant origin with enormous potential for future development of drugs for cancer therapy and management.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmacy, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, 700 053, West Bengal, India.
| | - Arijit Gandhi
- Department of Pharmaceutics, Bengal College of Pharmaceutical Science and Research, Durgapur, 713 212, West Burdwan, West Bengal, India
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921, Rimini, Italy
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Street, Sofia, 1113, Bulgaria
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|